636 research outputs found

    Observation of a tricritical wedge filling transition in the 3D Ising model

    Full text link
    In this Letter we present evidences of the occurrence of a tricritical filling transition for an Ising model in a linear wedge. We perform Monte Carlo simulations in a double wedge where antisymmetric fields act at the top and bottom wedges, decorated with specific field acting only along the wegde axes. A finite-size scaling analysis of these simulations shows a novel critical phenomenon, which is distinct from the critical filling. We adapt to tricritical filling the phenomenological theory which successfully was applied to the finite-size analysis of the critical filling in this geometry, observing good agreement between the simulations and the theoretical predictions for tricritical filling.Comment: 5 pages, 3 figure

    Density functional theory study of the nematic-isotropic transition in an hybrid cell

    Get PDF
    We have employed the Density Functional Theory formalism to investigate the nematic-isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyse the behavior of the capillary transition as a function of the fluid-substrate interactions and the pore width. In addition to the usual capillary transition between isotropic-like to nematic-like states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interface-like states which allow to continuously transform the nematic-like phase to the isotropic-like phase without undergoing a phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematic-like state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematic-like state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematic-like states.Comment: 31 pages, 10 figures, submitted to J. Chem. Phy

    Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission

    Get PDF
    H.G.M.E., I.H., and R.I. acknowledge the support of the STFC Research Council in the UK ExoMars programme. J.J. and P.V. acknowledge the support of the Grant Agency of the Czech Republic (210/10/0467) and of the Ministry of Education of the Czech Republic (MSM0021620855).Peer reviewedPublisher PD

    Bilayered smectic phase polymorphism in the dipolar Gay-Berne liquid crystal model

    Get PDF
    We present computer simulations of the Gay–Berne model with a strong terminal dipole. We report the existence of different stable antiferroelectric interdigitated bilayered phases in this model with diverse in-plane organization. The occurrence of these phases depends crucially on the value of the molecular elongation . For = 3 we find an interdigitated bilayered smectic-A phase absent when there is no dipole and a bilayered smectic-T or crystal with positional in-plane tetragonal ordering, different from the hexatic observed in the absence of the molecular dipole. For =4, bilayered smectic-A and in-plane hexatic-ordered smectic-B or crystal phases are observe

    Phase equilibria and critical behavior of square‐well fluids of variable width by Gibbs ensemble Monte Carlo simulation

    Get PDF
    The vapor–liquid phase equilibria of square†well systems with hard†sphere diameters σ, well†depths ε, and ranges λ=1.25, 1.375, 1.5, 1.75, and 2 are determined by Monte Carlo simulation. The two bulk phases in coexistence are simulated simultaneously using the Gibbs ensemble technique. Vapor–liquid coexistence curves are obtained for a series of reduced temperatures between about Tr=T/Tc=0.8 and 1, where Tc is the critical temperature. The radial pair distribution functions g(r) of the two phases are calculated during the simulation, and the results extrapolated to give the appropriate contact values g(σ), g(λσ−), and g(λσ+). These are used to calculate the vapor†pressure curves of each system and to test for equality of pressure in the coexisting vapor and liquid phases. The critical points of the square†well fluids are determined by analyzing the density†temperature coexistence data using the first term of a Wegner expansion. The dependence of the reduced critical temperature T* c=kTc/ε, pressure P* c=Pcσ3/ε, number density Ï * c=Ï cσ3, and compressibility factor Z=P/(Ï kT), on the potential range λ, is established. These results are compared with existing data obtained from perturbation theories. The shapes of the coexistence curves and the approach to criticality are described in terms of an apparent critical exponent β. The curves for the square†well systems with λ=1.25, 1.375, 1.5, and 1.75 are very nearly cubic in shape corresponding to near†universal values of β (β≊0.325). This is not the case for the system with a longer potential range; when λ=2, the coexistence curve is closer to quadratic in shape with a near†classical value of β (β≊0.5). These results seem to confirm the view that the departure of β from a mean†field or classical value for temperatures well below critical is unrelated to long†range, near†critical fluctuations

    Computer simulations of nematic drops: Coupling between drop shape and nematic order

    Get PDF
    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rodlike particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like dro
    corecore