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The condition of microscopic reversibility, also referred to as detailed
balance, is examined in the context of Monte Carlo simulations in the Gibbs
ensemble. The technique is used widely in the simulation of phase equilibria for
liquids and their mixtures, and represents an invaluable tool in the area.
The two coexisting phases are simulated as separate subsystems by performing
three distinct Monte Carlo moves which include random displacements of
particles in each subsystem, random changes in volume, and random transfers
of particles between the two subsystems. Here, the particle transfer step of the
Gibbs ensemble technique, as commonly implemented, is shown to be reversible.
Other valid reversible criteria are presented for pure fluids and mixtures. The
vapour-liquid equilibria of the pure square-well fluid with a range of 2 = 1'5 are
examined with the various criteria. As expected, the choice of criteria makes
little difference for pure fluids. The results are also presented of liquid-liquid
immiscibility for a symmetrical square-well mixture with range 2 = 1-5 in which
the unlike interactions are purely repulsive. For this mixture the various
reversible algorithms for particle transfers give essentially equivalent results,
although the efficiency in sampling phase space is sometimes quite different.

1. Introduction

A lot of effort has been employed in the development of techniques for the
simulation of phase equilibria of fluids and fluid mixtures [1]. Indirect methods
invariably involve calculating the chemical potential or free energy of each phase
during a series of Monte Carlo or molecular dynamics simulations. When two phases
are found to have the same temperature, pressure and chemical potential they are in
equilibrium. However, the overall procedure is tedious and time-consuming. Direct
methods for simulating phase equilibria are generally quicker, more efficient, and
casier to apply than the indirect methods. One method involves simulating the two
coexisting phases separated by an interface in a single simulation box. Bulk phase
equilibria can be represented for sufficiently large system sizes, but the confinement
often influences the properties of the fluid, especially for temperatures close to the
critical point. More recently, Panagiotopoulos [2] has developed the so-called Gibbs
ensemble Monte Carlo technique. In this direct method, typical regions of the two
coexisting homogeneous phases are simulated as separate subsystems, without the
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presence of an interface. The simulation involves three Monte Carlo moves including
random displacements of particles in each subsystem, random changes in volume,
and random transfers of particles between the two subsystems. The Gibbs ensemble
simulations are a good representation of bulk behaviour since, in this case, there is
no interface and the confinement problem does not arise. The method also allows a
closer approach to the critical point.

The Gibbs ensemble Monte Carlo technique has become the most commonly
used and versatile method for the direct simulation of phase equilibria. It has already
been used to study a wide variety of fluids and fluid mixtures, the results of which
have been extensively reviewed [1, 3, 4]. The technique is just as easy to apply to
vapour-liquid coexistence in pure fluids as to vapour-liquid coexistence in mixtures.

Quite recently, Gibbs ensemble simulations were undertaken in order to deter-
mine the phase equilibria of mixtures containing square-well particles [5]. The
modified algorithm which was used led us to examine the condition of microscopic
reversibility, also called detailed balance, for the particle transfer stage of the Gibbs
ensemble echnique. One must always ensure that this condition is satisfied when
Monte Carlo algorithms are proposed in order to guarantee that a proper Markov
chain of states is generated [6]. In the following section we show that the technique
as originally devised complies with the condition of microscopic reversibility [6].
Alternative reversible criteria are also proposed. In the case of the vapour-liquid
equilibria of a pure square-well fluid with range A = 1-5 we show that the various
algorithms make little difference to the calculated phase equilibria for pure fluids.

Any possible differences could, however, be highlighted in the case of mixtures,
where the numbers of particles of a given component in the coexisting phases are
often very different. It turns out that the various algorithms proposed for mixtures
all reproduce the phase equilibria obtained using the original algorithm of Panagio-
topoulos et al. [7]. This will be demonstrated in section 3 for a symmetrical
square-well mixture with range 4 = 15 in which the unlike interactions are purely
repulsive, corresponding to hard-sphere interactions. The lack of unlike attractive
interactions in such a system results in a substantial region of liquid-liquid
immiscibility at high pressures (see [8]).

2. Gibbs ensemble Msiie Carlo simulations of pure fluids

First we review the Gibbs ensemble Monte Carlo technique in order to set the
scene for the rest of the discussion. The thorough statistical mechanical description
of the technique presented by Smit and co-workers [9, 10] has been adopted.

In the Gibbs ensemble of a pure fluid the N particles are at a constant temperature
T and in a volume V, as for the canonical ensemble. However, the system is divided
into two separate subsystems @ and b with volumes ¥* and V* and numbers of
particles N* and N°® so that V= V*+ V® and N = N° + N°®. The subsystems are
allowed to interchange particles and the volumes allowed to fluctuate in order to
satisfy the conditions of phase equilibrium, ie., that the temperature, pressure and
chemical potential of the subsystems are equal.

The partition function for the Gibbs ensemble is given by
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where A is the thermal de Broglic wavelength, V; is a basic unit of volume chosen
to render the partition function dimensionless [11], k is the Boltzmann constant,
(*) represents the positions of particles in subsystem j, and U/(N’) is the energy
of subsystem j. After introducing the re-scaled coordinates &/ = r//L4, where L7 is the
box length of the simulated subsystem j, the partition function of the total systems
can be written as

Gibbs __ 1 i N! v dVa(Va)N“(Vb)N"
M T NIV, w20 NN

% J d(&9™ exp (— U‘;{(g“)) J d(E?)™ exp <— U’;{(Z”)) ()
Ve %4

Hence, the average of a function f in the Gibbs ensemble is given by
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It is clear from an inspection of equation (3) that the corresponding probability
distribution for the ensemble is proportional to a pseudo-Boltzmann factor given by
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The acceptance probability of the three types of move that are attempted in a

Gibbs ensemble simulation are governed by expression (4). The first involves the

random displacement of particles in each subsystem using the well established

canonical NVT Metropolis scheme [12] so that new configurations of subsystem j
are generated with a probability given by min (1, #*) where

: AUY
P = — X 5
exp ( T ) Q)

Here, AU represents the change in energy in subsystem j caused by the displacement.
The second type of move involves a random change AV in the volume of subsystem
a and a corresponding change — AV in the volume of subsystem b so that the new
configurations are generated with a probability given by min (1, #¥) where

a b__A a b
.@V=exp[N“ln<K;T~M)+Nbln(V V)—AU _AU :|, (6)
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which is identical to the prescription of Wood [13] for constant pressure NPT
simulations. The third type of move involves a particle transfer between the two
subsystems; for a transfer of a particle from subsystem a to subsystem b, the
configurations are generated with a probability given by min (1, ") where

aysb a b
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This particle transfer is similar to the creation and annihilation of particles in the
grand canonical uVT ensemble [14].

A cycle in a Gibbs ensemble Monte Carlo simulation usually involves N¢ and
N? particle displacements in subsystems a and b, one coupled volume change, and
0(10 x N) particle transfers between the two subsystems. Typically, @(100 x N)
cycles are performed. In order to ensure that the condition of microscopic reversibility
is fulfilled, the three types of move have to be selected at random with fixed
probabilities chosen so that the appropriate ratios of each type of move are obtained
[4]. The particle-displacement and volume-change moves of Gibbs ensemble simula-
tions can themselves be seen to satisfy the conditions of microscopic reversibility,
since these moves are no different from those in standard simulations in the canonical
and isothermal—isobaric ensembles [6]. This is not so obvious for the particle transfer
move, as will become clear from the ensuing discussion.

With the original algorithm of Panagiotopoulos [2], which we refer to as
algorithm 1, the donor and recipient subsystems for the transfer are first chosen at
random, and then a random particle in the donor subsystem is transferred to a
random position in the recipient subsystem. Let us consider the pure system in an
overall configuration o with N® and N°® particles in subsystems a and b. A new overall
configuration f§ is generated by transferring a particle from subsystem a to b so that
there are now N“— 1 and N” + 1 particles in subsystems a and b. The probability
of this transfer is proportional to

%ﬂ — Na!Nb! x gsubsystema X e@garticlea % gposiuonb % yo(lhbbs X y:zilerion, (8)

where @ubrstema jg the probability of choosing subsystem a as the donor for the
transfer, 22714 {5 the probability that a particle is chosen from the N ¢ of subsystem
a in configuration o, 2Peitiond ig the probability of selecting a position for insertion
in subsystem b, 291 is the probability of the total system being in configuration
a, and Pggr*" is the acceptance criterion used for the particle transfer. The
probabilities of choosing either subsystem a or b as a donor or recipient for the
transfer are usually equal so that gpsubsystema — gpsubsystemb . 1 Congequently, these
factors will not be present in the final acceptance criterion for the transfer. The
probability of choosing a particle in conventional N VT and NPT simulations is fixed,
ie., 2rartidle — /N and hence the factor just forms part of the constant of propor-
tionality in the overall probability for the Monte Carlo move. However, in the case
of a Gibbs ensemble simulation the number of particles in each subsystem changes,
as does the probability of choosing a particular particle; in the case of our present
example, the probability of choosing a particle from subsystem a in configuration «
is gppariclea — 1 /N4, Since the particles are inserted uniformly in each subsystem the
probabilities of selecting a position for insertion in subsystems a and b are equal, i.c.,
gppositiona — ggpositiond \which means that these terms will not appear in the overall
acceptance criterion. The probability of finding the system in configuration o is
obtained from equation (4). Finally, it should be noted that since the particles are
indistinguishable, the labelling of the particles is not important. Since we will later
impose the condition of microscopic reversibility we have to sum over all N®IN"!
possible permutations of the labels used in the actual simulation, and hence the
multiplying factor in expression (8). This is essentially equivalent to using the
partition function of a system of distinguishable particles (e.g., see [15]).

For the reverse move, i.e., the probability of transferring a particle from subsystem
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b back to subsystem a,

%a — (Na _ 1)'(Nb -+ l)' X gsubsystemb X ggarlicleb % gpositiona X gg‘ibbs % ylcyraiterion’
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Perion is the acceptance criterion used for the transfer, and the multiplying factor of
(N*— DYN?® + 1)! takes into account the sum over all possible permutations of the
labels for configuration f with N* — 1 and N? + 1 particles in subsystems a and b,
respectively.

In order to satisfy the condition of microscopic reversibility, the probabilities
of the forward and reverse particle transfers must be equal, i.c.,

Py = P (11)

From equation (11) we are able to determine the acceptance criterion for a reversible
transfer move as

gzriterion
‘@tl = cfiterion
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B (Na _ 1)‘(Nb _ 1)' E@subsystemb ggarticleb gpositiona g?ibbs
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This result is identical to the original transfer criterion (7) proposed by Panagio-
topoulos for simulations in the Gibbs ensemble. This clearly means that the
original algorithm and transfer criterion comply with the condition of microscopic
reversibility.

We propose an alternative algorithm (algorithm 2) which satisfies the condition
of microscopic reversibility and involves the random selection of the particle to be
transferred from one of the N particles of the total system regardless of which
subsystem it is in; the particle is then transferred to the other subsystem. The means
that the probability of choosing the particles is now 2Pl — | /N for all con-
figurations. Since the choice of a particular particle for the transfer determines
the donor and recipient subsystems, the probability of choosing a given subsystem
is not included in overall transfer probabilities (8) and (9). As before, the sum over the
NN® and (N* — 1)I(N? + 1)! possible permutations of the labels which we use in
the actual simulation for configurations o and f has to be taken into account.
Following a procedure similar to that for algorithm 1, the overall acceptance criterion
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for algorithm 2 is given by

gzriterion
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It is clear that in this case we do not require a knowledge of the numbers of particles
in each subsystem; this is now similar to conventional Monte Carlo simulations in
the NVT and NPT ensembles. In the case of an ideal gas of non-interacting particles,
equation (13) becomes

= (14)

which makes physical sense since the probability of a particle being in a particular
subsystem is proportional to the volume of that subsystem.

In table 1 we present results for the vapour—liquid equilibria of an N = 512
square-well system with a range of A =15 (see [16] for details). The chemical
potentials in the coexisting phases have been calculated using the technique proposed
by Smit and Frenkel [10] for simulations in the Gibbs ensemble; this is a variant of
the Widom [17] particle insertion method. The results obtained using the original
algorithm (algorithm 1) and transfer criterion (12) of Panagiotopoulos are seen to
be indistinguishable from those obtained using our algorithm 2 with transfer criterion
(13) within the error bars of the data. We have also examined smaller systems of
N = 64 particles and found that the two criteria are still essentially equivalent. This
result is not unexpected since both algorithms are equivalent in the sense that the
particle transfers are reversible.

Table 1. Vapour-liquid coexistence data obtained from Gibbs ensemble simulations of
N = 512 square wells with a range of A = 1-5 for algorithm 1 with criterion (12), and
algorithm 2 with criterion (13). The reduced density p* = No3/V and chemical potential
w* = p/(kT) are given for the coexisting vapour v and liquid | phases as a function of
the temperature T* = kT/e. Algorithm 1 corresponds to choosing the donor subsystem
at random, and then randomly choosing a particle to transfer from that subsystem.
Algorithm 2 corresponds to randomly choosing a particle from the N of the total system
regardless of which subsystem it is in.

Algorithm  Criterion T* ¥ p¥ u¥ u¥
1 (12) 1:00 0039+0002 0659+0015 —374+005 —373+006
2 (13) 100 0038+0002 ©0659+0016 —375+005 —375+005
1 (12) 1112 0078 0004 0579 +0-023 —-3294+007 —329+007
2 (13) 1-12 008510004 0-580+0024 —328+006 —3294007
1 (12) 1120 0151 +0020 0457 +0061 —301+011 —302+012
2 (13) 120 0179+0038 040640137 —-301+012 —301+011
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It is instructive to investigate the efficiency of these two schemes. Let us consider
an ideal gas for which the probability of acceptance (12) of algorithm 1 becomes
ay/b a
g NV P (15)
(Nb + I)Va ,Db
and for algorithm 2 (13)
eV
Pye = e (16)
If the two subsystems are in equilibrium, the probability of the transfers being
accepted for algorithm 1 is one; for an ideal gas the two subsystems must have the
same number density, i.e., p* = p® This algorithm is therefore more efficient than
algorithm 2. In fact, one would intuitively expect this since at equilibrium the number
of particles added to a subsystem should be equal to the number of particles removed
from that subsystem. If one uses an algorithm in which there are more attempts to
insert particles than attempts to remove particles (i.e., algorithm 2), the acceptance
criterion will ensure that a proportional number of attempts will be rejected.
When dealing with mixtures, there are some cases in which one would choose to
use an alternative algorithm. A number of these algorithms together with the
corresponding transfer criteria are presented in the following section.

3. Gibbs ensemble Monte Carlo simulations of mixtures

In the case of mixtures we must examine the transfers of particles of a given type
to and from the two subsystems; a detailed discussion of the statistical mechanics of
the isothermal—isobaric version of the Gibbs ensemble for mixtures is given elsewhere
[5]. To simplify the analysis we consider a binary mixture of components 1 and 2.
In their original algorithm for mixtures, which we refer to as algorithm Im,
Panagiotopoulos et al. [7] suggest that the donor and recipient subsystems should
be chosen at random, the type of particle should be chosen randomly with a fixed
but otherwise arbitrary probability, and finally a random particle of that type in the
donor subsystem should be chosen and transferred to a random position in the
recipient subsystem. As for the pure component fluid of the previous section, the
overall transfer probability when a particle of type 1 is transferred from subsystem
a to subsystem b is proportional to

%ﬂ — N‘i'Nbl'N%'Ng' X gsubsystema 1% e@typel % ggarticle 1,a % gposilionb
% ggirzbs 1% g:;}iterion, (17)

where N9INGINSINS! represents the possible number of permutations of the labels
for configuration o of the mixture, 2Y7¢* is the probability of choosing a component
of type 1, grarticlel.a jg the probability of choosing a given particle of type 1 in
subsystem a,

. N,! N,!
9§$b5=exp[ln< - b>+ln< 2 b>+N“an”+N”an”

py* Ppy? U"(N“)_N”(N”)]

(18)
kT kT kT kT
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is the probability that the overall system is in configuration « for an isothermal-
isobaric Gibbs ensemble simulation of the mixture [5], and the other probabilities
have the same meanings as for the pure fluid. Here, N; and N/ are the numbers of
particles of type i in the total system and in subsystem j; the composition of particles
of type i in subsystem j is given by x/ = NJ/N-. Similarly, the probability of transfer-
ring a particle of type 1 from subsystem b back to subsystem a is proportional to

‘%a — (N({ _ 1)'(Nli + 1)|N%|Ng| X gsubsystemb X ytypel X @;ﬂ)articlel,b
X E@positiona X yl(}ii;bs X @;&ilerion, (19)

where for configuration 8, (N4 — D!(N} + 1)IN4!N%! represents the possible number
of permutations of the labels, 252! -? ig the probability of choosing a given particle
of type 1 in subsystem b, and

; N! Ny!
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kT kT kT kT
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As for the pure system, the probabilities of choosing either subsystem a or b are
equal, ie., Pgrosvsiema — gpsubsystemd — L a5 are the probabilities of choosing a particle
of type 1 or 2, ie, #¥Pet = PWpe?2 = L: these just form part of the constant of
proportionality in the overall probability for the transfer. The probabilities of
choosing a particle of type 1 in subsystem a of configuration « and in subsystem b
of configuration f are #Exicleh = {/N¢ and 2§l = 1/(N] + 1), respectively.
We can ensure that the particle transfer algorithm is reversible by equating the
forward and backward probabilities. It is gratifying to see that the imposition of the
condition of microscopic reversibility leads directly to the original transfer criterion
of Panagiotopoulos et al. [7] which, in this case, is given by

criterion
P = gﬁﬂ
lm gperiterion
Ba
(N'I _ 1)'(Nl{ + 1)'N§'NZ' gsubsystemb gatypel ggarliclel,b
= N‘; 'NI; 'N3|NI£' X ysubsystema X ytype 1 X @garticle 1l,a

positiona Gibbs
L2 P50
position b Gibbs
P P

= ex [m( Niv® >—AU0—AU’J] (21)
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An identical expression can be obtained for component 2 in terms of N4 and N§.
Next we consider the genecralization of algorithm 2 for pure fluids to mixtures
(algorithm 2m). Now the particle which is to be transferred is chosen randomly from
one of the N particles of the total system regardiess of which subsystem it is in or
what species it is. Following the same procedure as before, the forward and reverse
probabilities of transferring a particle of type 1 from subsystem a to subsystem b are
still obtained from equations (17) and (19), but now gsebsystema ggsubsysiemb 51 gptypet
are not included since the particles are chosen regardless of the subsystem or the
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type, and gpperticlela = gpparticle 1L — 4 /N As with the original algorithm 1m, we can
comply with the condition of microscopic reversibility by ensuring that the forward
and reverse moves have the same probability. The transfer criterion for algorithm
2m is given by

e(ﬂcriterion
t ap

2m T <@criterion
Pa

_ (ivni _ 1)'(N€ + 1)'N%'NZ' y ggarticlel,b =@positiona eq;l(i‘x’ixlr)lbs

N‘;lellNglle ggarlicle 1,a X gpositionb X E@Sint:bs
<N’{ + 1) [ ( Nev? ) AU* AU”}
= exp| In — — ,
N§ (NS + Dye kT kT
|4 AU® AU?
=exp|ln{ —)~——— } (22)
Ve kT kT

which is identical to criterion (13) for the corresponding algorithm 2 of pure fluids.

Before we compare the results of simulations using algorithms 1m and 2m for a
specific system, it is interesting to examine an alternative algorithm 3m which has
already been used for mixtures containing square-well molecules [5]. The algorithm
involves choosing the donor and recipient subsystems at random, and then randomly
choosing the particle which is to be transferred from the donor subsystem regardless
of its type, and transferring it to a random position in the recipient subsystem. In
this case the probabilities for the forward and reverse transfers of a particle of type
1 to and from subsystems a and b are still proportional to equations (17) and (19),
but 297¢! is not included, and #Etcleb-@ = 1/N® and 2§icteh? = 1 /(N® 4 1). The
reversible transfer criterion is now given by

criterion
o g)aﬁ
3m T gcriterion
'@ﬂa
b a b subsystem b particle1,b
_ (N§ = DINS + DINGINGL  geosemd  gppariele
N(; ]NI; 'N%'Ng' gsubsystema Wgarticle 1,a

positiona Gibbs
4 Phim

X
positionb Gibbs
P 2

_<N§+1>< N° )ex [m( N§V* > AU* AUb}
v e s )P N\t o) Tk T kT
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The final expression for the mixture is now the same as the corresponding expression
for the pure component system (see criterion (7)).

It is important to stress that algorithms 1m, 2m and 3m with the corresponding
criteria (21), (22), and (23) are completely equivalent since they are all reversible.
This was borne out in practice for algorithms 1m and 3m in the case of mixtures
containing square-well molecules [5]; the calculated chemical potentials of each
component were found to be equal in the two subsystems, confirming that the unique
conditions for phase equilibria were satisfied. This is demonstrated again here for the
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three algorithms. The results of constant-pressure Gibbs ensemble simulations for
the liquid—-liquid phase equilibria of mixtures of N = 512 symmetrical square wells
with 2 = 1-5 in which the unlike interaction is purely repulsive are presented in table
2 (see [5] for details of the simulations). It is clear that the data corresponding to
the original Panagiotopoulos et al. scheme (algorithm 1m) are virtually indistinguish-
able from the data corresponding to the alternative algorithms 2m and 3m. The three
algorithms describe the liquid-liquid coexistence correctly and ensure that the
chemical potentials of each component in the two phases are the same.

In order to investigate the efficiency of the three algorithms, we again consider
the case of the ideal gas. For a mixture of ideal gases, the acceptance criterion (21) of
algorithm 1m reduces to

N4VE xipf
(N2 + D)V xbp?

t,ig
Im =™

the acceptance criterion (22) of algorithm 2m to

b
g;t,ig — K
2m — >
Va

and the acceptance criterion (23) of algorithm 3m to

Ney? ~p)"

TN D ot

t,ig
3m

Since the two subsystems of an ideal gas mixture at equilibrium are identical we have
p® = p® and x% = x4. As a consequence the probability that the transfer moves are
accepted is one for algorithms Im and 3m, and these algorithms are therefore more
efficient than algorithm 2m. For an ideal gas mixture there is no difference between
algorithms 1m and 3m because at equilibrium x4 = x5. For an interacting system,
however, x$ and x% will be different and one would expect differences in efficiency.

At equilibrium the number of particles of a particular type that is removed
from a subsystem is equal to the number that is added to it. This suggests that
an efficient algorithm (algorithm 4) would be one in which attempts are made to
remove/add a particle in the two subsystems with equal probability, i.e., Z5rosysteme —
gprsystemb = L but where for each type of particle the total number of attempts is
proportional to the total number of particles of that type, i.e., for particles of type 1
2Pl = N, /N and for particles of type 2 2?°? = N,/N. In this case we have the
following acceptance criterion:

gcriterion
t _ < af
'@4“‘ - gcriterion
Ba
(N‘; _ 1)‘(Nl{ + 1)'N3'N3' gsubsystemb gtypel ggarticlel,b
= X X X
b b bsystema t 1 ticlel,a
N4INYINGING! gpsubsystema © gptype 1 T gpparticte

'@positiona ggibbs

m
X ——— X —
position b Gibbs

P 17

ex [m( N4y? > AU“_AU”] 24)
PI™\ e+ 0pe) "%~ kT )’
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which is identical to the original transfer criterion (21). The efficiency of algorithm
4 will have to be examined for a mixture other than the symmetrical one studied
here since in this case we use N; = N, so that #9P¢! = PWPe2 = L a5 for algorithm 1m.
These arguments suggest that the original algorithm is the most efficient when
the number of particles of the two components are equal. The other algorithms may
be of more use when the number of particles in the two phases are very different.

4. Conclusion

In this paper we focus on the use of different algorithms and transfer criteria in
Gibbs ensemble Monte Carlo simulations which conform to the conditions of
microscopic reversibility. The vapour-liquid and liquid—liquid phase equilibria of
pure fluids and mixtures containing square-well molecules are examined as examples.
We show that the original transfer schemes of Panagiotopoulos for pure fluids and
mixtures are reversible in the usual Monte Carlo sense. Alternative reversible transfer
algorithms are proposed and the differences are found to be negligible, The particular
choice of algorithm will depend on its efficiency for the state point under investigation.

It may have struck the reader that the analysis presented in this paper for Gibbs
ensemble simulations can be applied to the creation and annihilation of particles in
the commonly used grand canonical simulations [6, 14, 18-21]. If the probabilities
of attempting the creaction and annihilation of the particles are equal, the usual
criterion is found to be reversible, as has already been shown by Nicholson and
Parsonage [21].
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