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The condition of microscopic reversibility, also referred to as detailed 
balance, is examined in the context of Monte Carlo simulations in the Gibbs 
ensemble. The technique is used widely in the simulation of phase equilibria for 
liquids and their mixtures, and represents an invaluable tool in the area. 
The two coexisting phases are simulated as separate subsystems by performing 
three distinct Monte Carlo moves which include random displacements of 
particles in each subsystem, random changes in volume, and random transfers 
of particles between the two subsystems. Here, the particle transfer step of the 
Gibbs ensemble technique, as commonly implemented, is shown to be reversible. 
Other valid reversible criteria are presented for pure fluids and mixtures. The 
vapour-liquid equilibria of the pure square-well fluid with a range of 2 = 1'5 are 
examined with the various criteria. As expected, the choice of criteria makes 
little difference for pure fluids. The results are also presented of liquid-liquid 
immiscibility for a symmetrical square-well mixture with range 2 = 1"5 in which 
the unlike interactions are purely repulsive. For this mixture the various 
reversible algorithms for particle transfers give essentially equivalent results, 
although the efficiency in sampling phase space is sometimes quite different. 

1. Introduction 

A lot of effort has been employed in the development of techniques for the 
simulation of phase equilibria of fluids and fluid mixtures [1]. Indirect methods 
invariably involve calculating the chemical potential or free energy of each phase 
during a series of Monte Carlo or molecular dynamics simulations. When two phases 
are found to have the same temperature, pressure and chemical potential they are in 
equilibrium. However, the overall procedure is tedious and time-consuming. Direct 
methods for simulating phase equilibria are generally quicker, more efficient, and 
easier to apply than the indirect methods. One method involves simulating the two 
coexisting phases separated by an interface in a single simulation box. Bulk phase 
equilibria can be represented for sufficiently large system sizes, but the confinement 
often influences the properties of the fluid, especially for temperatures close to the 
critical point. More recently, Panagiotopoulos I-2] has developed the so-called Gibbs 
ensemble Monte Carlo technique. In this direct method, typical regions of the two 
coexisting homogeneous phases are simulated as separate subsystems, without the 
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presence of an interface. The simulation involves three Monte Carlo moves including 
random displacements of particles in each subsystem, random changes in volume, 
and random transfers of particles between the two subsystems. The Gibbs ensemble 
simulations are a good representation of bulk behaviour since, in this case, there is 
no interface and the confinement problem does not arise. The method also allows a 
closer approach to the critical point. 

The Gibbs ensemble Monte Carlo technique has become the most commonly 
used and versatile method for the direct simulation of phase equilibria. It has already 
been used to study a wide variety of fluids and fluid mixtures, the results of which 
have been extensively reviewed [1, 3, 4]. The technique is just as easy to apply to 
vapour liquid coexistence in pure fluids as to vapour-liquid coexistence in mixtures. 

Quite recently, Gibbs ensemble simulations were undertaken in order to deter- 
mine the phase equilibria of mixtures containing square-well particles [5]. The 
modified algorithm which was used led us to examine the condition of microscopic 
reversibility, also called detailed balance, for the particle transfer stage of the Gibbs 
ensemble technique. One must always ensure that this condition is satisfied when 
Monte Carlo algorithms are proposed in order to guarantee that a proper Markov 
chain of states is generated [-6]. In the following section we show that the technique 
as originally devised complies with the condition of microscopic reversibility [6]. 
Alternative reversible criteria are also proposed. In the case of the vapour-liquid 
equilibria of a pure square-well fluid with range 2 = 1.5 we show that the various 
algorithms make little difference to the calculated phase equilibria for pure fluids. 

Any possible differences could, however, be highlighted in the case of mixtures, 
where the numbers of particles of a given component in the coexisting phases are 
often very different. It turns out that the various algorithms proposed for mixtures 
all reproduce the phase equilibria obtained using the original algorithm of Panagio- 
topoulos et al. [7]. This will be demonstrated in section 3 for a symmetrical 
square-well mixture with range 2 = 1.5 in which the unlike interactions are purely 
repulsiye, corresponding to hard-sphere interactions. The lack of unlike attractive 
interactions in such a system results in a substantial region of liquid-liquid 
immiscibility at high pressures (see [8]). 

2. Gibbs ensemble M ~ , t e  Carlo simulations of pure fluids 

First we review the Gibbs ensemble Monte Carlo technique in order to set the 
scene for the rest of the discussion. The thorough statistical mechanical description 
of the technique presented by Smit and co-workers [-9, 10] has been adopted. 

In the Gibbs ensemble of a pure fluid the N particles are at a constant temperature 
T and in a volume V, as for the canonical ensemble. However, the system is divided 
into two separate subsystems a and b with volumes V a and V b and numbers of 
particles N a and N b so that V =  v a +  V b and N = N a +  N b. The subsystems are 
allowed to interchange particles and the volumes allowed to fluctuate in order to 
satisfy the conditions of phase equilibrium, i.e., that the temperature, pressure and 
chemical potential of the subsystems are equal. 

The partition function for the Gibbs ensemble is given by 

,qGibb~-- 1 ~ N! f o e _ _  M.,NVT N!AaNVo N"= 0 N"!Nb! dV~ 

• fro d(rO)N~' (U~ ~ ( ub(Nb)~, exp 
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where A is the thermal de Broglie wavelength, V o is a basic unit of volume chosen 
to render the partition function dimensionless [11], k is the Boltzmann constant, 
(if)us represents the positions of particles in subsystem j, and UJ(N j) is the energy 
of subsystem j. After introducing the re-scaled coordinates ~J = rJ/L J, where L j is the 
box length of the simulated subsystem j, the partition function of the total systems 
can be written as 

QGibbs -- l ~ N ! f ff NVr N!A3~Vo No=o Na!Nb! dV"(Va)N"(Vb)Nb 

x fvod(~a)N"exp( U~162 / Ub'Nb)~'kT J (2) 

Hence, the average of a function f in the Gibbs ensemble is given by 

r  1 l~Nlff 
J I N V T  FlGibbs AI ' I  A 3 N I / -  Na!Nb!  dV"(V")N~ 

.~zLNVT ~v ; x •  r 0 N a = O  

Ub(N b) •162176176 )j (3) 
It is clear from an inspection of equation (3) that the corresponding probability 
distribution for the ensemble is proportional to a pseudo-Boltzmann factor given by 

NGibbs=exp[ ln (  N! ~ + N ,  lnV,+NblnV b U"(N ~) ub(Nb)] 
L \N"!Nb!J kT ~ - - j . ,  (4) 

The acceptance probability of the three types of move that are attempted in a 
Gibbs ensemble simulation are governed by expression (4). The first involves the 
random displacement of particles in each subsystem using the well established 
canonical N VT Metropolis scheme [12] so that new configurations of subsystem j 
are generated with a probability given by min (1, NoJ) where 

~d~ = exp \ kT )" (5) 

Here, AU J represents the change in energy in subsystem j caused by the displacement. 
The second type of move involves a random change A V in the volume of subsystem 
a and a corresponding change - A V  in the volume of subsystem b so that the new 
configurations are generated with a probability given by rain (1, r where 

~v = exp IN a In (V<'+v?,AV~.j + Nb In ( Vb - AI/)V(, _ AU"kT AUb~_]' (6) 

which is identical to the prescription of Wood [13] for constant pressure NPT 
simulations. The third type of move involves a particle transfer between the two 
subsystems; for a transfer of a particle from subsystem a to subsystem b, the 
configurations are generated with a probability given by rain (1, Nt) where 

= e x p  In \(Ng + ] kT kT I" ( 7 )  
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This particle transfer is similar to the creation and annihilation of particles in the 
grand canonical p V T  ensemble [14]. 

A cycle in a Gibbs ensemble Monte Carlo simulation usually involves N" and 
N b particle displacements in subsystems a and b, one coupled volume change, and 
(9(10 x N) particle transfers between the two subsystems. Typically, C(100 x N) 
cycles are performed. In order to ensure that the condition of microscopic reversibility 
is fulfilled, the three types of move have to be selected at random with fixed 
probabilities chosen so that the appropriate ratios of each type of move are obtained 
[4]. The particle-displacement and volume-change moves of Gibbs ensemble simula- 
tions can themselves be seen to satisfy the conditions of microscopic reversibility, 
since these moves are no different from those in standard simulations in the canonical 
and isothermal-isobaric ensembles [6]. This is not so obvious for the particle transfer 
move, as will become clear from the ensuing discussion. 

With the original algorithm of Panagiotopoulos [2], which we refer to as 
algorithm 1, the donor and recipient subsystems for the transfer are first chosen at 
random, and then a random particle in the donor subsystem is transferred to a 
random position in the recipient subsystem. Let us consider the pure system in an 
overall configuration c~ with N" and N b particles in subsystems a and b. A new overall 
configuration fl is generated by transferring a particle from subsystem a to b so that 
there are now N" - 1 and N ~ + 1 particles in subsystems a and b. The probability 
of this transfer is proportional to 

criterion ~ p  = N a ! N b !  x ~subsyst . . . .  X ~@particlea X ~positionb X ~ct-@Gibbs X ~afl ' (8) 

w h e r e  ~subsystema is the probability of choosing subsystem a as the donor for the 
t r ans f e r ,  particlea �9 ~ct IS the probability that a particle is chosen from the N" of subsystem 
a in configuration c~, ~positionb is the probability of selecting a position for insertion 
in subsystem b, ~,~ibbs is the probability of the total system being in configuration 
c4 and N~}iterion is the acceptance criterion used for the particle transfer. The 
probabilities of choosing either subsystem a or b as a donor or recipient for the 
transfer are usually equal so that ~subsystema = ~ s u b s y s t e m b  1. Consequently, these 
factors will not be present in the final acceptance criterion for the transfer. The 
probability of choosing a particle in conventional N VT and N P T  simulations is fixed, 
i.e., ~partlcle = l /N,  and hence the factor just forms part of the constant of propor- 
tionality in the overall probability for the Monte Carlo move. However, in the case 
of a Gibbs ensemble simulation the number of particles in each subsystem changes, 
as does the probability of choosing a particular particle; in the case of our present 
example, the probability of choosing a particle from subsystem a in configuration c~ 
is ~particlea = 1/N a. Since the particles are inserted uniformly in each subsystem the 
probabilities of selecting a position for insertion in subsystems a and b are equal, i.e., 
~posit iona = ~@positionb, which means that these terms will not appear in the overall 
acceptance criterion. The probability of finding the system in configuration c~ is 
obtained from equation (4). Finally, it should be noted that since the particles are 
indistinguishable, the labelling of the particles is not important. Since we will later 
impose the condition of microscopic reversibility we have to sum over all Na!Nb! 
possible permutations of the labels used in the actual simulation, and hence the 
multiplying factor in expression (8). This is essentially equivalent to using the 
partition function of a system of distinguishable particles (e.g., see [15]). 

For the reverse move, i.e., the probability of transferring a particle from subsystem 
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b back to subsystem a, 

~#~ = (N ~ - 1)!(N b + 1)! x ~subsystemb X ~articleb 

where now ~artioleb = 1/(N b + 1), 

criterion X ~posi t iona X ~ i b b s  X ~flct , 

(9) 

I (  N, ) ~ i b b s  = exp In (N" - 1)!(N b + 1)! + (N~ - 1) In V" 

+ (N b + 1)In V b U"(N ~ - 1) Ub(N b + 1)1 
k T  k T  ' 

0o) 

criterion ' r  is the acceptance criterion used for the transfer, and the multiplying factor of 
(N a - 1)!(N b -I- 1)! takes into account the sum over all possible permutations of the 
labels for configuration fl with N ~ - 1 and N b + 1 particles in subsystems a and b, 
respectively. 

In order to satisfy the condition of microscopic reversibility, the probabilities 
of the forward and reverse particle transfers must be equal, i.e., 

From equation (11) we are able to determine the acceptance criterion for a reversible 
transfer move as 

~:~iterion 
~Uerion 

= (N" - -  1 ) ! ( N  b - -  1)! X ~subsystemb X --~artieleb X ~posi t iona X ~ i b b s  

Na!Nb[ ~subsyst  . . . .  .@particle a ~posit ion b .@Gibbs 
~ct  --Gt 

= exp in \ ( N b  + 1) V" k T kT-J '  (12) 

This result is identical to the original transfer criterion (7) proposed by Panagio- 
topoulos for simulations in the Gibbs ensemble. This clearly means that the 
original algorithm and transfer criterion comply with the condition of microscopic 
reversibility. 

We propose an alternative algorithm (algorithm 2) which satisfies the condition 
of microscopic reversibility and involves the random selection of the particle to be 
transferred from one of the N particles of the total system regardless of which 
subsystem it is in; the particle is then transferred to the other subsystem. The means 
that the probability of choosing the particles is now Np,rtiole = 1IN for all con- 
figurations. Since the choice of a particular particle for the transfer determines 
the donor and recipient subsystems, the probability of choosing a given subsystem 
is not included in overall transfer probabilities (8) and (9). As before, the sum over the 
NO!Nb! and (N" - 1)!(N b + 1)! possible permutations of the labels which we use in 
the actual simulation for configurations e and fl has to be taken into account. 
Following a procedure similar to that for algorithm 1, the overall acceptance criterion 
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for algori thm 2 is given by 

~ r i t e r i o n  

( N  a - 1 ) ! ( N  b + 1)! ~particie 
X - -  Na!Nb! ~particle 

N b + 1 F / N " V  b \ 

- N o  

= e x p  In ~ k T  k T J "  

~posi t iona  ~ibbs 
X - -  X - - -  ~posi t ion b _6~ Gibbs 

k T  k T J  

(13) 

It is clear that  in this case we do not  require a knowledge of  the numbers  of  particles 
in each subsystem; this is now similar to conventional  Monte  Carlo simulations in 
the N VT and  N P  T ensembles. In the case of an ideal gas of non-interact ing particles, 
equat ion (13) becomes 

V b 
= - -  (14) 

N~ V a, 

which makes physical sense since the probabili ty of  a particle being in a particular 
subsystem is propor t ional  to the volume of that  subsystem. 

In table 1 we present results for the vapour - l iqu id  equilibria of  an N = 512 
square-well system with a range of  2 = 1.5 (see [16] for details). The chemical 
potentials in the coexisting phases have been calculated using the technique proposed 
by Smit and Frenkel [10] for simulations in the Gibbs ensemble; this is a variant of  
the Widom [17] particle insertion method. The results obtained using the original 
algori thm (algorithm 1) and transfer criterion (12) of Panagio topoulos  are seen to 
be indistinguishable f rom those obtained using our  algori thm 2 with transfer criterion 
(13) within the error bars of  the data. We have also examined smaller systems of 
N = 64 particles and found that  the two criteria are still essentially equivalent. This 
result is not  unexpected since both  algorithms are equivalent in the sense that  the 
particle transfers are reversible. 

Table 1. Vapour-liquid coexistence data obtained from Gibbs ensemble simulations of 
N = 512 square wells with a range of 2 = 1'5 for algorithm 1 with criterion (12), and 
algorithm 2 with criterion (13). The reduced density p* = Ncr3/V and chemical potential 
lt* = p/(kT) are given for the coexisting vapour v and liquid 1 phases as a function of 
the temperature T* = kT/E. Algorithm 1 corresponds to choosing the donor subsystem 
at random, and then randomly choosing a particle to transfer from that subsystem. 
Algorithm 2 corresponds to randomly choosing a particle from the N of the total system 
regardless of which subsystem it is in. 

Algorithm Criterion T* p* p* #* #* 

1 (12) 1'00 0"039_____0'002 0"659__+0"015 -3"74__+0"05 -3"73+0"06 
2 (13) 1"00 0'038 -+ 0'002 0"659__+ 0"016 -3 '75  • 0"05 -3-75 __+ 0'05 
1 (12) 1"12 0"078 + 0"004 0'579 __+ 0"023 - 3'29 -I- 0"07 - 3"29 -+ 0"07 
2 (13) 1"12 0'085 __ 0"004 0'580 • 0'024 - 3'28 __ 0-06 - 3"29 _____ 0"07 
1 (12) 1'20 0'151 + 0"020 0"457 __+ 0'061 - 3-01 __+ 0"11 - 3'02 __+ 0"12 
2 (13) 1'20 0"179 +0'038 0'406-1-0"137 -3"01 -+0'12 -3"01 -+0'11 
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It is instructive to investigate the efficiency of these two schemes. Let us consider 
an ideal gas for which the probability of acceptance (12) of algorithm I becomes 

N a v b pa 
- ~ (15) 

~ ' g  (N b + 1)V ~ pb' 

and for algorithm 2 (13) 
V b 

~ i g -  V a" (16) 

If the two subsystems are in equilibrium, the probability of the transfers being 
accepted for algorithm 1 is one; for an ideal gas the two subsystems must have the 
same number density, i.e., p " =  pb. This algorithm is therefore more efficient than 
algorithm 2. In fact, one would intuitively expect this since at equilibrium the number 
of particles added to a subsystem should be equal to the number of particles removed 
from that subsystem. If one uses an algorithm in which there are more attempts to 
insert particles than attempts to remove particles (i.e., algorithm 2), the acceptance 
criterion will ensure that a proportional number of attempts will be rejected. 

When dealing with mixtures, there are some cases in which one would choose to 
use an alternative algorithm. A number of these algorithms together with the 
corresponding transfer criteria are presented in the following section. 

3. Gibbs ensemble Monte  Carlo simulations of  mixtures 

In the case of mixtures we must examine the transfers of particles of a given type 
to and from the two subsystems; a detailed discussion of the statistical mechanics of 
the isothermal-isobaric version of the Gibbs ensemble for mixtures is given elsewhere 
[5]. To simplify the analysis we consider a binary mixture of components 1 and 2. 
In their original algorithm for mixtures, which we refer to as algorithm lm, 
Panagiotopoulos et al. [7] suggest that the donor and recipient subsystems should 
be chosen at random, the type of particle should be chosen randomly with a fixed 
but otherwise arbitrary probability, and finally a random particle of that type in the 
donor subsystem should be chosen and transferred to a random position in the 
recipient subsystem. As for the pure component fluid of the previous section, the 
overall transfer probability when a particle of type 1 is transferred from subsystem 
a to subsystem b is proportional to 

~ ,  : N~!N~!N~!N~! x ~subsystema X ~typel X --a~particlel'a X ~positionb 

criterion (17) .~Gibbs X ~afl N ~a, m 

where Ara I Arb 1Ara I hrb I �9 " 1.1' 1.1" 2 .1' 2. represents the possible number of permutations of the labels 
for configuration c~ of the mixture, ~type 1 is the probability of choosing a component 
of type 1, ~particlel,a is the probability of choosing a given particle of type 1 in 
subsystem a, 

~ G i b b s = e x p [ l n (  NI[ ~ ( N2[ .~ g a g a g b m b 
~.m \N~!N~tJ  + In \ N ~ ! N ~ t , / +  In + In 

P V" e V b U"(N") N b(N b)] 
( 1 8) 

kT  kT  k T  k T  " 3 
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is the probability that the overall system is in configuration c~ for an isothermal- 
isobaric Gibbs ensemble simulation of the mixture [5], and the other probabilities 
have the same meanings as for the pure fluid. Here, N~ and N i are the numbers of 
particles of type i in the total system and in subsystem j; the composition of particles 
of type i in subsystem j is given by x! = Ni/N i. Similarly, the probability of transfer- 
ring a particle of type 1 from subsystem b back to subsystem a is proportional to 

1).(g 1 + 1)!g~!g~! x x x ~B = ( N ~ ,  , b ~subsystemb ~ t y p e l  ~ a r t i c l e l , b  

6lbGibbs criterion X ~positiona X ~'fl,m N ~ .  , (19) 

where for configuration fl, (N~ v b - 1).(N1 + 1)!N"z!N~! represents the possible number 
of permutations of the labels, ~a,tir ~, b is the probability of choosing a given particle 
of type 1 in subsystem b, and 

a,m = e x p  in (N~ T b 1)! + I n  + ( N " - l )  ln 
- + 

+ (N b + 1) In V b PV"kT pVbkT U~(N~kT- 1) Ub(N bkT + 1)]. (20) 

As for the pure system, the probabilities of choosing either subsystem a or b are 
equal, i.e., ~s~bsyst~m, = ~}ubsyst~mb = �89 as are the probabilities of choosing a particle 
of type 1 or 2, i.e., ~typ, i = ~typ,2 = �89 these just form part of the constant of 
proportionality in the overall probability for the transfer. The probabilities of 
choosing a particle of type i in subsystem a of configuration c~ and in subsystem b 
of configuration fl a r e  l~a particle 1,a = 1/N] a n d  ~ a r t i e l e l , b  = 1/(N] + 1), respectively. 
We can ensure that the particle transfer algorithm is reversible by equating the 
forward and backward probabilities. It is gratifying to see that the imposition of the 
condition of microscopic reversibility leads directly to the original transfer criterion 
of Panagiotopoulos et al. [7] which, in this case, is given by 

~ t l m  __ ~e~iterion 

~ i t e r l o n  

(N~ -- T b ~i~subsystemb 1 ~ a r t i c l e l , b  1 ) . ( N  1 + 1)!N~IN~! ~type  
: X X - - X  N "~.I N bl !N"2!Nbz ! ~subsystema ~type 1 - - a  .@particle 1,a 

~positiona ~Gibbs  
~ ,  m 

X • 
~position b .@Gibbs 

--a,  m 

[ ( ) 
= e x p  l n \ ( N ~ + I ) V  " ] -  kT - ~ T J "  (21) 

An identical expression can be obtained for component 2 in terms of N~ and N~. 
Next we consider the generalization of algorithm 2 for pure fluids to mixtures 

(algorithm 2m). Now the particle which is to be transferred is chosen randomly from 
one of the N particles of the total system regardless of which subsystem it is in or 
what species it is. Following the same procedure as before, the forward and reverse 
probabilities of transferring a particle of type 1 from subsystem a to subsystem b are 
still obtained from equations (17) and (19), but now ~subsystema ~subsystemb and ~type 1 
are not included since the particles are chosen regardless of the subsystem or the 



Microscopic reversibility in the Gibbs ensemble 443 

type, and ~ p a r t i c l e  1 , a  = ~article 1,b ~--- 1/N. As with the original algorithm lm, we can 
comply with the condition of microscopic reversibility by ensuring that the forward 
and reverse moves have the same probability. The transfer criterion for algorithm 
2m is given by 

~ i t e r i o n  

( N ~  , b l~T~r~V~rb, - -  1 ) . ( N 1  + " J . ~ '  2 - '  2 .  = 
g a  I l~[ b T IkT a T ~T b 1 

1 "~"  1 "~"  2 " ~ '  2 "  

= ( N ~ + l ~ e x p  

= exp In 

~part ic le  1, b 
X 

~part ic le  1,a 

ln( N'lVb + 1)V ~ - AU~ 
I ~ U  a Aub l 
kT kT 3' 

~posit iona ~,gGibbs 
d f l ,  m X X ~position b .@Gibbs 

k T J '  

(22) 

which is identical to criterion (13) for the corresponding algorithm 2 of pure fluids. 
Before we compare the results of simulations using algorithms lm and 2m for a 

specific system, it is interesting to examine an alternative algorithm 3m which has 
already been used for mixtures containing square-well molecules [5]. The algorithm 
involves choosing the donor and recipient subsystems at random, and then randomly 
choosing the particle which is to be transferred from the donor subsystem regardless 
of its type, and transferring it to a random position in the recipient subsystem. In 
this case the probabilities for the forward and reverse transfers of a particle of type 
1 to and from subsystems a and b are still proportional to equations (17) and (19), 
but ~typel is not included, and ~particlel,a = 1/N ~ a n d  ~ a r t i c l e l , b  = 1/(N b + 1). The 
reversible transfer criterion is now given by 

~ m  - -  ~c~iterion 

~ i t e r i o n  

- -  1 ) . ( N 1  + " ) ' ~ '  2" '"  2" 
( N ~  [ b 1"~[ A/a T/k/b , ~i~subsystemb ~ a r l i c l e  1,b 

= X X 
N a  T lkr b ~ Ikr a T Ik'[ b I ~subsystema .@particle 1,a 

l ' ~ V  1 " ~ "  2 "~'~ 2 "  - - a  

~posit iona d,~Gibbs 
~'fl,  m 

X X ~position b .@Gibbs 
--c~, m 

= \ ~ - 1 ,  ] \ N ~ ] e x p  l n \ ( N ~ +  1)V a kT k T j '  

[- /I NaV b "~ AU ~ AUbl 
= exp [ln~(Nb + x)r  a) kT -s [ (23) 

The final expression for the mixture is now the same as the corresponding expression 
for the pure component system (see criterion (7)). 

It is important to stress that algorithms lm, 2m and 3m with the corresponding 
criteria (21), (22), and (23) are completely equivalent since they are all reversible. 
This was borne out in practice for algorithms lm and 3m in the case of mixtures 
containing square-well molecules [5]; the calculated chemical potentials of each 
component were found to be equal in the two subsystems, confirming that the unique 
conditions for phase equilibria were satisfied. This is demonstrated again here for the 
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three algorithms. The results of constant-pressure Gibbs ensemble simulations for 
the liquid-liquid phase equilibria of mixtures of N = 512 symmetrical square wells 
with 2 = 1.5 in which the unlike interaction is purely repulsive are presented in table 
2 (see [5] for details of the simulations). It is clear that the data corresponding to 
the original Panagiotopoulos et al. scheme (algorithm lm) are virtually indistinguish- 
able from the data corresponding to the alternative algorithms 2m and 3m. The three 
algorithms describe the liquid liquid coexistence correctly and ensure that the 
chemical potentials of each component in the two phases are the same. 

In order to investigate the efficiency of the three algorithms, we again consider 
the case of the ideal gas. For a mixture of ideal gases, the acceptance criterion (21) of 
algorithm tm reduces to 

~ t , i g  - -  N~I Vb xa lpa  
l m  (N +I)V ~ b '  

the acceptance criterion (22) of algorithm 2m to 

V b 
~ t ,  ig _ 

2m 
V a ' 

and the acceptance criterion (23) of algorithm 3m to 

N a v b p a  
~ t ,  ig __ ,.~ 

3m (N b + 1)va IO b " 

Since the two subsystems of an ideal gas mixture at equilibrium are identical we have 
pa = pb and x] = x~. As a consequence the probability that the transfer moves are 
accepted is one for algorithms lm and 3m, and these algorithms are therefore more 
efficient than algorithm 2m. For  an ideal gas mixture there is no difference between 
algorithms lm and 3m because at equilibrium x~ = x b. For  an interacting system, 
however, x] and x b will be different and one would expect differences in efficiency. 

At equilibrium the number of particles of a particular type that is removed 
from a subsystem is equal to the number that is added to it. This suggests that 
an efficient algorithm (algorithm 4) would be one in which attempts are made to 
remove/add a particle in the two subsystems with equal probability, i.e., ~i~subsystema = 

~ubsystemb = 1 but where for each type of particle the total number of attempts is 
proportional to the total number of particles of that type, i.e., for particles of type 1 
~ t y p e l  = N1/N and for particles of type 2 ~ t y p e 2  = N2/N" In this case we have the 
following acceptance criterion: 

~ m  - -  ~ c ~ i t e r i o n  

  r.orion 
(N~ v b ,~subsystem b - -  I ) . ( N  1 + 1)[Na2!Nb2[  

- x - -  
N"~!N~!N~!N~! ~subsystem a 

~ p o s i t i o n  a ~ G i b b s  
~ ' f l ,  m • • 

~ p o s i t i o n  b .@Gibbs  
~ ,  m 

=exp ln\(N~ +l)Va j kr ~ J '  

~ t y p e  1 ~ a r t i c l e  1, b 
• • 

~ t y p e  i .@part ic le  1, a 

(24) 
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which is identical to the original transfer criterion (21). The efficiency of algorithm 
4 will have to be examined for a mixture other than the symmetrical one studied 
here since in this case we use N1 = N2 so that yype 1 = ~ t y p e 2  = 1 as for algorithm lm. 

These arguments suggest that the original algorithm is the most efficient when 
the number of particles of the two components are equal. The other algorithms may 
be of more use when the number of particles in the two phases are very different. 

4. Conclusion 

In this paper we focus on the use of different algorithms and transfer criteria in 
Gibbs ensemble Monte Carlo simulations which conform to the conditions of 
microscopic reversibility. The vapour-liquid and liquid-liquid phase equilibria of 
pure fluids and mixtures containing square-well molecules are examined as examples. 
We show that the original transfer schemes of Panagiotopoulos for pure fluids and 
mixtures are reversible in the usual Monte Carlo sense. Alternative reversible transfer 
algorithms are proposed and the differences are found to be negligible. The particular 
choice of algorithm will depend on its efficiency for the state point under investigation. 

It may have struck the reader that the analysis presented in this paper for Gibbs 
ensemble simulations can be applied to the creation and annihilation of particles in 
the commonly used grand canonical simulations [6, 14, 18-21]. If the probabilities 
of attempting the creaction and annihilation of the particles are equal, the usual 
criterion is found to be reversible, as has already been shown by Nicholson and 
Parsonage [-21]. 
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