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The vapor-liquid phase equilibria of square-well systems with hard-sphere diameters o, well- 
depths E, and ranges il = 1.25, 1.375, 1.5, 1.75, and 2 are determined by Monte Carlo 
simulation. The two bulk phases in coexistence are simulated simultaneously using the Gibbs 
ensemble technique. Vapor-liquid coexistence curves are obtained for a series of reduced 
temperatures between about T,. = T/T, = 0.8 and 1, where T, is the critical temperature. The 
radial pair distribution functions g(r) of the two phases are calculated during the simulation, 
and the results extrapolated to give the appropriate contact values g(a), g(/Za- ), and 
g(;la -I- ). These are used to calculate the vapor-pressure curves of each system and to test for 
equality of pressure in the coexisting vapor and liquid phases. The critical points of the square- 
well fluids are determined by analyzing the density-temperature coexistence data using the first 
term of a Wegner expansion. The dependence of the reduced critical temperature Tr = kT,/q 
pressure P r = P,o-‘/E, number density p: = pE d, and compressibility factor Z = P /(pkT), on 
the potential range il, is established. These results are compared with existing data obtained 
from perturbation theories. The shapes of the coexistence curves and the approach to criticality 
are described in terms of an apparent critical exponent 8. The curves for the square-well 
systems with il = 1.25, 1.375, 1.5, and 1.75 are very nearly cubic in shape corresponding to 
near-universal values ofp (flzO.325). This is not the case for the system with a longer 
potential range; when ;1 = 2, the coexistence curve is closer to quadratic in shape with a near- 
classical value of p (PzO.5). These results seem to confirm the view that the departure of fl 
from a mean-field or classical value for temperatures well below critical is unrelated to long- 
range, near-critical fluctuations. 

I. INTRODUCTION 

Systems of particles interacting via the square-well po- 
tential have been extensively studied by statistical mechani- 
cal methods. Such interest is invariably due to the fact that 
the square-well potential is the simplest model which in- 
cludes the presence of attractive and repulsive forces. The 
potential energy u(r) for a pair of square-well particles sepa- 
rated by a distance r is given by 

i 

+ 03, if r<q 
u(r) = -E, if a<r</2o; (1) 

0, if r&la, 
where u is the hard-sphere diameter of the particle, il is the 
reduced range of the potential well, and E is its depth. The 
model is of substantial theoretical importance in studies of 
systems with a varying potential range since it can represent 
three limiting cases, namely, the hard-sphere, the short- 
range sticky-sphere, and the long-range van der Waals 
fluids. 

There has been a series ofstudies in which integral equa- 
tions were solved numerically for the structural and thermo- 
dynamic properties of square-well systems. These have in- 
cluded solutions of the Percus-Yevick (PY),‘-’ 
hypernetted chain (HNC) ,‘*’ and mean-spherical approxi- 

mations (MSA) ‘v9 of the Omstein-Zemike (OZ) integral 
equation, and of the Yvon-Born-Green (YBG) equa- 
tion’s2’ based on the superposition approximation. In the 
context of the present study, it is worth discussing the results 
of the YBG theory in more detail. Numerical calculations 
for square-well systems with a potential range of il = 1.85 
have shown that the YBG equation appears to have a region 
of long-range solutions characterized by near-universal val- 
ues of the critical exponents y = 1.24, /3 = 0.33, and S = 4.4 
for the compressibility on the critical isochore, the coexis- 
tence curve, and the critical isotherm, respectively.‘7-2’ This 
is in direct contrast with the results of PY theory in which 
the critical exponents seem to be classical.22 More accurate 
studies suggest that the YBG equation does not exhibit a true 
critical point.23-26 It is this confused state of affairs which, in 
part, motivated the present study. 

Perturbation theory has often been used to calculate the 
thermodynamics properties of square-well fluids.27-33 In 
this paper we compare the critical constants obtained from 
the second-order theory3’ for systems with a range of values 
of ;1 with estimates from computer simulation. A perturba- 
tion theory for fluids which uses the square-well fluid as the 
reference has also been developed by de1 Rio et a1.34V35 They 
have extended the approach to deal with square-well fluids 
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of variable well width.3c39 The theory gives reasonable 
agreement with existing simulation data for short and long 
ranges of the potential and most of the fluid range. 

In addition to theory, a number of Monte Carlo simula- 
tion studies of square-well fluids have been under- 
taken.4043p8*30 The first molecular dynamics simulations of 
square-well systems were performed by Alder et al.* By and 
large, only systems with a potential range of II = 1.5 were 
examined although some results are available for other po- 
tential ranges ( 1.125 < ;I < 2) .30,43 Many temperatures and 
densities in the fluid state have been investigated, but only 
sketches of the systems’ phase equilibria have been simulat- 
ed. 

Direct simulation techniques can be applied to the study 
of phase equilibria. 45+46 The simplest method involves simu- 
lating the two coexisting phases separated by an interface in 
a single simulation box. Most of the simulation studies focus- 
ing on the properties of the interfacial region have been re- 
viewed by Rowlinson and Widom.47 For sufficiently large 
system sizes, the methods can be used to study bulk phase 
coexistence. Chapela er aL4’ have used the molecular dy- 
namics method to study the phase equilibria of the square- 
well system with /z = 1.5 by confining the fluid in a box be- 
tween parallel hard walls that are perpendicular to the z 
direction. Initially the fluid is homogeneous and is given a 
density close to the critical value, but a fast spinodal decom- 
position occurs and a slab of liquid condenses at the center of 
the box with vapor on either side of it. More recently, Bena- 
vides et a1.39 have performed a similar study for the square- 
well fluid with/z = 3. However, these types of direct simula- 
tion studies of phase equilibria possess significant drawbacks 
because the method is restricted to a film of liquid confined 
between parallel plates. Unless the size of the system is very 
large the confinement causes the coexistence properties of 
the fluid to be different from the bulk coexistence properties 
of interest. In fact, the method breaks down altogether for 
temperatures close to the critical point. The effect of confin- 
ing a fluid between parallel plates is discussed in Sec. IV with 
reference to the square-well fluid with /z = 1.5. 

A more recent approach which is used to directly simu- 
late phase equilibria is the so-called Gibbs ensemble Monte 
Carlo technique. 49*50 In this method the two coexisting ho- 
mogeneous phases in thermodynamic equilibrium are simu- 
lated in separate boxes without the presence of an interface. 
The simulation involves three distinct Monte Carlo moves: 
phase space is sampled randomly in each box by moving the 
molecules following the usual Metropolis Monte Carlo 
scheme; a random change in volume is made so that an in- 
crease in volume of one box corresponds to a decrease in 
volume in the other, and vice versa; finally, molecules are 
interchanged between the two boxes. Since the interface is 
not included in Gibbs ensemble simulations, the coexistence 
properties are expected to be a good representation of bulk 
behavior, and in contrast to the former method, the confine- 
ment problem does not arise. It has also been suggested51.52 
that because the method allows for fluctuations in the 
numbers of particles and volumes of the subsystems, the 
Gibbs ensemble method leads to better estimates of the criti- 
cal constants of the infinite system and a closer proximity to 

the critical point can be achieved. 
Gibbs ensemble Monte Carlo simulations have now 

been performed for a number of potential models, including 
pure Lennard-Jones fluids and mixtures,49’50*53954 the sym- 
metrical nonadditive hard sphere system,55 the hard-core 
two-Yukawa tluid,56 the Lennard-Jones fluid with a quad- 
rupole interaction, ” the nonspherical Gay-Berne fluid,58 
square-well diatomics,59 and more realistic models for al- 
kanes and water.60v6’ 

In this work we present the first results of Gibbs ensem- 
ble Monte Carlo simulations for the vapor-liquid phase 
equilibria of square-well fluids with potential ranges of 
il = 1.25, 1.375, 1.5, 1.75, and 2. The critical constants for 
the square-well systems are obtained by analyzing the data 
using the first term of a Wegner expansion. The purpose of 
the study is twofold: first, to provide accurate vapor-liquid 
coexistence data for the square-well systems for comparison 
with mean-field and perturbation theories; second, to deter- 
mine the dependence of the critical constants on ;1 and to 
analyze the overall shape of the coexistence curves in terms 
of an apparent critical exponent 0. In view of the success of 
the Gibbs method in estimating the critical point, the ap- 
proach to the critical point is examined with particular at- 
tention placed on the shape of two-phase envelope for the 
various ranges of the potential. Details of the simulations 
and the data analysis are discussed in Sets. II and III, and the 
results are presented in Sec. IV. 

II. COMPUTER SIMULATIONS 

In Gibbs ensemble Monte Carlo simulations the coexist- 
ing vapor and liquid phases are monitored simultaneously as 
separate subsystems without the presence of an interface. 
Here, we present a brief summary of the Gibbs ensemble 
algorithm of Panagiotopoulos49*50 as applied to square-well 
fluids with variable range. For a clearer and more detailed 
description of the technique, the reader is referred to the 
original papers. A thorough statistical mechanical deriva- 
tion of the algorithm has been presented by Smit ef a1.,51v52 
and the method has also been described in a couple of recent 
reviews.46*62 

At the start of the simulation N, = 256 square-well par- 
ticles representing one of the coexisting phases are placed on 
a face-centred-cubic (fee) lattice in a cubic box 1 of volume 
V, with the usual periodic boundary conditions (PBC) and 
minimum image convention (MIC) .45 Similarly, N, = 256 
particles of the other phase are placed in an equivalent box 2 
of volume V2. One box represents the vapor phase and the 
other the liquid phase so that the total number of particles 
under study is N = N, + N2 = 5 12. During the course of 
the simulation, the volumes and the numbers of particles of 
the two subsystems are allowed to vary in such a way that the 
temperature T, the total volume V= V, + V, and the total 
number of particles N = N, + N2 remain constant. Since 
the simulation ensures that the pressures P, and P2, the 
chemical potentials p, and p2, and the temperature are 
equal, random fluctuations will force the subsystems into 
regions of phase space representing the two coexisting 
phases. 

A simulation cycle in the Gibbs ensemble Monte Carlo 
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method comprises three distinct types of moves: N, and N2 
trial particle displacements within each box, one trial vol- 
ume change, and a number of trial particle interchanges 
which depend on the density of the system. In the case of 
displacement moves, the particles are chosen and displaced 
randomly within the boxes following the well established 
canonical NVT Metropolis scheme.63 The acceptance prob- 
ability for each subsystem is adjusted to -40% by varying 
the maximum extent of particle displacements. After the N, 
and N2 trial displacements in each box, a random change in 
volume is attempted. The volume changes of the two boxes 
are coupled, with the overall volume V remaining constant 
in order to satisfy the condition of equality of pressures in the 
two regions. The acceptance probability for the volume 
change is essentially given by the prescription of Wooda for 
simulations in the isothermal-isobaric NPT ensemble. The 
maximum allowable volume displacement is adjusted to give 
a-40% acceptance rate for the new trial configurations. 
The last stage of the Gibbs ensemble method involves parti- 
cle interchanges between the two subsystems in order to en- 
sure equality of chemical potential in the two phases. This is 
achieved by creating a particle at a random position in one 
subsystem and annihilating a randomly chosen particle in 
the other region. The creation/annihilation moves are remi- 
niscent of Monte Carlo simulations in the grand canonical 
,U VT ensemble. The number of interchange moves that are 
attempted is adjusted so that - l%-5% of the total number 
of particles are interchanged per cycle; typically 250-3000 
interchange attempts are required for the square-well fluid 
in the density range of interest. 

model, the pressure cannot be obtained directly from simula- 
tion. The virial equation can be used, however, if the radial 
pair-distribution function g( r) is known or, more specifical- 
ly, if its contact values g(a), g(/Za- ), and g(/Za+ ) corre- 
sponding to the discontinuities of the potential are known. 
By determining the distances between pairs of particles in 
each subsystem once every cycle, histograms are constructed 
which when normalized give g(r) for the two coexisting 
phases. The contact values are obtained by extrapolating the 
data for g(r) .& The equation of state can be obtained from 
the pressure equation’ 

P -= 1 +p-p+%m --A3[gbw) -g(Ao+)lI, 
PkT 

(2) 
wherep = N/Vis the number density. Hence, if the contact 
values of g(r) are known for a given number density, the 
compressibility factor Z and the pressure of the square-well 
fluid can be calculated from Eq. (2). The pressures of the 
coexisting vapor and liquid phases are determined in this 
way for all of the systems studied. The uncertainties in the 
values of the pressures are difficult to calculate, but can be 
estimated from the errors in the mean densities of each phase 
and the errors incurred when g( r) is extrapolated to give the 
contact values. 

The simulation of phase equilibria for a given state point 
requires a total of 2-7 X 10’ such cycles. After equilibrating 
the system for 1-2X IO5 cycles, a further l-5 X lo5 cycles are 
performed to accumulate the averages for the properties of 
the two coexisting phases. The long runs are required for the 
higher-density configurations. Verlet neighbor 1istP are 
used for each subsystem to speed up the calculation of pair 
interactions, the lists being recalculated every cycle. The 
mean numbers of particles N, and N, , volumes V, and I’,, 
and energies E, and E, for the two coexisting phases 1 and 2 
are obtained as configurational averages over the accumula- 
tion stage of the simulation. In this way the coexistence va- 
por and liquid densities for the square-well system at a fixed 
temperature are determined. The errors in the average prop- 
erties of interest are estimated by calculating the standard 
deviations for blocks of 25 cycles. The initial configurations 
used in the studies at low temperature are fee lattices. The 
final equilibrium configurations obtained from the first run 
are then used as the starting point of simulations at a higher 
temperature. By repeating the simulations for a series of 
temperatures and potential ranges, the vapor-liquid coexis- 
tence curves are determined between the critical tempera- 
ture and - 80% of its value for systems withal = 1.25, 1.375, 
1.5, 1.75, and 2. 

In the following section we discuss how the critical con- 
stants are obtained by analyzing the phase equilibrium data 
and how the approach to the critical point can be described 
in terms of a Wegner expansion with the corresponding criti- 
cal exponents. The results of the Gibbs-ensemble simula- 
tions for the phase-equilibria and critical behavior of the 
square-well systems are presented in Sec. IV. 

III. CRITICAL POINT 
An advantage of the Gibbs ensemble Monte Carlo tech- 

nique over other computer simulation methods is that a clos- 
er proximity to the critical point can be achieved. By a care- 
ful analysis of the surface contributions to the free energy 
density, Smit et al. ” have shown that vapor-liquid coexis- 
tence cannot be observed close to but below the critical 
point. Since Metropolis Monte Carlo simulations for a ca- 
nonical ensemble overestimate the value of the critical tem- 
perature, the Gibbs ensemble leads to a better estimate of its 
value. They explain this unexpected observation in terms of 
fluctuations in the volumes and numbers of particles of the 
two subsystems allowed in Gibbs ensemble simulations. 

The pressures of the coexisting phases have also been 
calculated for each one of these systems in order to deter- 
mine the corresponding vapor-pressure curves and to verify 
the equality of pressure for given coexistence points. In the 
case of a discontinuous potential such as the square-well 

In a study of particular interest, the available data for a 
number of systems exhibiting vapor-liquid and liquid-liquid 
phase equilibria have been re-examined.67 The approach to 
the critical point was described in terms of an effective criti- 
cal exponent and a Wegner expansion to account for the 
correction to scaling outside the range of the pure power law 
behavior. It was suggested that the mean-field or classical 
critical exponents never accurately describe the shape of a 
vapor-liquid coexistence curve. We shall question this con- 
clusion for the coexistence data of the square-well systems 
with ;1 = 2 and 3 in Sec. IV. The study also showed that the 
departure of the effective critical exponents from their classi- 
cal values over a wide range of reduced temperatures well 
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below the critical point is unrelated to long-range, near-criti- 
cal fluctuations. This observation was confirmed for the 
Gibbs ensemble simulation data of the Lennard-Jones sys- 
tem49 in which long-range fluctuations could not be repre- 
sented since the maximum system size investigated was 
N = 500, and it also ties in with the conclusions of Smit et 
al.” The overall consequence of this, as far as simulations in 
the Gibbs ensemble are concerned, is that although the cor- 
relation lengths of fluctuations are limited by the finite size 
of the box, the effective critical exponent has a value close to 
the universal value obtained by the renormalization group 
(RG) theory for infinite correlation lengths. 

The effective critical exponent was first defined and 
used by Verschaffelt6* in 1896 as a sensitive measure of the 
shape of a coexistence curve. For a vapor of density pU in 
coexistence with a liquid of density p,, it is defined as 

Be = JMp, -pv) 
alnIt ’ 

where t = 1 - T/T, and T, is the critical temperature. In 
the limit of small values oft corresponding to temperatures 
just below the critical point, 

(p, -pv) =WIS9 (4) 
where B, is the leading amplitude term. The universal value 
determined from RG theory of p = 0.325 implies a cubic 
shape for the coexistence curve, whilst the classical mean- 
field value of p = 0.5 represents a quadratic coexistence 
curve. 

(3) 

RG theory also allows corrections to scaling to be calcu- 
lated outside this asymptotic critical region. Wegner69’70 
showed that away from the critical point, Eq. (4) can be 
written as an expansion of the form 

(pi-p,) =BoItla+B,ItIP+A’+B*ItIs+2A’+..., (5) 
where A, is one of the so-called gap exponents taking the RG 
value of A, = 0.5 for the vapor-liquid systems of interest, 
and Bj are the correction amplitudes or coefficients. Equa- 
tion (5) can be used with vapor-liquid coexistence data to 
estimate the system’s critical temperature T, and critical ex- 
ponent fi. In order to estimate the critical density pc, an 
equation for the “diameters” (pu + p, )/2 of the coexistence 
curve must be used,” 

The anomaly in the diameter of the coexistence curve char- 
acterized by tC, is weak and difficult to observe. By combining 
Eqs. (5) and (6) an equation for the density on each branch 
can be obtained, 

p* =pc+C,ItI~+C21tI+C31tI~+A1+~.. 

*~(BoItI~+B,ItIs+A~+B21tIP+2A~+...). (7) 

Here, p _ and p + represent the vapor and liquid phase den- 
sities, respectively. 

Originally, it was hoped that most of the terms in the 
above expression would be used to analyze the data obtained 
in this simulation study; however, since the results obtained 
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were of insufficient precision for a very accurate data analy- 
sis, some of the terms in the expression were neglected. More 
specifically, we excluded the terms C, and C, in the expres- 
sion for the diameter, and all the higher terms Bi for i > 0 in 
the Wegner expansion. In our study, temperatures moder- 
ately close to the critical point were investigated correspond- 
ing to 0 < It I < 0.2, and the gap exponent terms which de- 
scribe behavior far from the critical point were expected to 
be small compared with the leading terms. The errors in the 
Gibbs ensemble coexistence densities were too large to deter- 
mine whether or not the extended scaling corrections had to 
be included. Equation (7) then simplifies to 

P* =pc +C2ltl *PoIv~ (8) 
in which we are effectively assuming rectilinear diameters 
and using only the leading amplitude term (4) of the Wegner 
expansion. This expression allows us to fit the coexistence 
data and obtain estimates for pc, T,, p, and the amplitude 
terms C, and B, . The apparent critical exponent obtained in 
this way is expected to be very similar to the effective critical 
exponent defined by Eq. (3) and we shall use it to describe 
the overall shape of the coexistence curves obtained for the 
square-well fluids with different values of ;1. 

In order to estimate the critical pressure PC, the vapor- 
pressure curve of the fluid must be determined. By fitting the 
vapor-pressure data obtained from the simulation to an 
equation of the Clausius-Clapeyron” form, 

the value of PC corresponding to the value of T, obtained 
from Eq. (8) is calculated. 

The critical constants for the square-well systems were 
estimated in this way by fitting the Gibbs ensemble coexis- 
tence data to Eqs. (8) and (9) using a nonlinear least- 
squares procedure. 66 In the following section we report re- 
sults for the critical points and exponents obtained for the 
square-well fluids with varying il, and we re-examine the 
existing data for the Lennard-Jones, hard-core two- 
Yukawa, and Gay-Beme potential models. 

IV. RESULTS AND DISCUSSION 
The phase equilibria are determined using the Gibbs en- 

semble Monte Carlo technique described in Sec. II for 
square-well fluids with potential ranges characterized by 
il = 1.25, 1.375, 1.5, 1.75, and 2. The resulting vapor-liquid 
coexistence curves are shown in Figs. l-6, the vapor pres- 
sure curves are shown in Fig. 7, and the ;1 dependence of the 
critical temperature, pressure, density, compressibility fac- 
tor, and exponent are given in Table VI. 

In the following discussion, it is useful to reduce the 
temperature and energy with respect to the square-well 
deptheas T* = kT/eandE * = E/E, thepressureiswritten 
in terms of E and the hard-sphere diameter cr of the particles, 
i.e., P * = P~/E, the density is reduced with respect to (T as 
p* =pd, and th e compressibility factor is given by 
Z= P/(pkT) = P*/(p*T*).Thesubscriptconanyofthe 
variables denotes the critical point values. 

The vapor-liquid coexistence curves for the square-well 
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T” 
0.72 

0.70 

0.66 

0.66 

0.64 I 
0.0 

FIG. 1. The temperature-density vapor-liquid coexistence curve for a 
square-well fluid with a potential range of/2 = 1.25. The densities ofcoexist- 
ing vapor p: and liquid p: phases (squares) and diameters (p: + p:)/Z 
(triangles) are obtained from Gibbs ensemble Monte Carlo simulations; the 
error bars represent one standard deviation. The solid curve and line of ret- 
tilineardiameters are obtained by fitting Eq. (8) to the simulation data. The 
estimated critical point (circle) is also shown. 

fluid with ;1 = 1.25, 1.375, 1.5, and 1.75 are shown in Figs. 
l-4, respectively, as T - p projections of the PVT surfaces. 
The data points represent the results of Gibbs ensemble 
Monte Carlo simulations, and the continuous solid curves 
are obtained by a least-squares fit of Eq. (8) to the simula- 
tion data. The results of the Gibbs ensemble simulations for 
the densities, energies, and pressures of the coexisting vapor 
and liquid phases are summarized in Tables I-IV, and the 
values of the critical constants are given in Table VI. The 
values of p as listed in Table VI indicate coexistence curves 
which are closer to cubic than quadratic in shape as expected 
from the RG theory value ofp = 0.325. The apparent criti- 
cal exponent p = 0.34 f 0.02 found for il = 1.75 is signifi- 
cantly larger than those of the systems with a shorter poten- 
tial range, but the overall shape of the coexistence curve is 
still near-cubic. 

Also shown in Fig. 3 as solid triangles is the vapor- 
liquid coexistence simulation data obtained by Chapela et 
a1.48 They used the molecular dynamics method to study the 

T* 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 c 

P* 

FIG. 2. The temperature-density vapor-liquid coexistence curve for a FIG. 4. The temperature-density vapor-liquid coexistence curve for a 
square-well fluid with a potential range of L = 1.375. See the caption of Fig. square-well fluid with a potential range of/2 = 1.75. See the caption of Fig. 1 
1 for more details. for more details. 

1.25- 

1.20. 

1.15. 

T* 1.10- 

1.05. 

l.OO- 

0.95 i- 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 

P* 

FIG. 3. The temperature-density vapor-liquid coexistence curve for a 
square-well fluid with a potential range of A= 1.5. See the caption of Fig. 1 
for more details. Also shown on this figure as solid triangles are the corre- 
sponding data obtained from molecular dynamics simulations (Ref. 48). 

phase equilibria of the system with 2 = 1.5 by confining the 
fluid in a box between parallel hard walls. It is clear that the 
presence of the interface and the confining walls shifts the 
phase behavior away for the bulk coexistence values. Be- 
cause of the large critical fluctuations present in such simula- 
tions, the method should not be used to predict phase equili- 
bria for temperatures close to the critical point 
(0.85 < T/T, < 1.0). The Gibbs ensemble Monte Carlo 
technique allows a closer proximity to the critical point to be 
achieved and provides an accurate estimate of bulk phase 
equilibria. 

The coexistence curve obtained for the system with 
/z = 2 from simulations in the Gibbs ensemble are shown in 
Fig. 5 (also see Tables V and VI). In contrast to the results 
for the shorter potential ranges, the critical exponent 
fl= 0.53 f 0.11 found for this system indicates a classical 
critical behavior with a quadratic shape for the coexistence 
curve. Also shown in the figure as a dashed curve is the 
theoretical phase equilibria determined by using the accu- 

1.85 

1.60 

1.75 

1.70 
T* 

1.65 

-I 
0.1 0.2 0.3 0.4 0.5 0.6 
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TABLE I. Vapor-liquid coexistence data from Gibbs ensemble Monte Carlo simulations of N = 512 square- 
well molecules withapotential rangeofA = 1.25. Thedensitiesp*, energies E *, andpressuresP* ofthecoexist- 
ing vapor and liquid phases are labeled u and I, respectively. The errors in p* and E * represent one standard 
deviation over blocks of 25 cycles, and the error in P* is estimated from the errors in the density and the 
extrapolated contact values of g( r). 

T* P: P: ES W Pf p: 

0.66 0.062 f 0.001 0.823 f 0.010 - 0.63 f 0.07 - 4.36 f 0.07 0.027 f 0.002 0.025 f 0.008 
0.68 0.060 f 0.003 0.792 f0.018 - 0.55 f 0.06 - 4.16 fO.ll 0.033 f 0.002 0.033 f 0.013 
0.70 0.085 f 0.007 0.761 f 0.014 - 0.74 f 0.11 - 3.97 f 0.07 0.037 f 0.005 0.045 f 0.016 
0.72 0.103 f 0.006 0.708 f 0.014 - 0.83 f 0.12 - 3.69 f 0.07 0.049 f 0.006 0.054 f 0.015 
0.73 0.127 f 0.011 0.684 kO.022 - 0.99 f 0.12 - 3.57 f 0.11 0.046 f0.012 0.059 f0.022 
0.75 0.161 f0.016 0.597kO.028 - 1.17kO.14 - 3.17kO.12 0.067*0.016 0.079 i-0.025 
0.76 0.208 f 0.021 0.516 f 0.039 - 1.46 f 0.14 - 2.84 f. 0.16 0.072 f 0.026 0.098 f 0.034 

TABLE II. Vapor-liquid coexistence data from Gibbs ensemble Monte Carlo simulations of N = 512 square- 
well molecules with a potential range of A = 1.375. See Table I for details. 

T* P: P: E: E: p: p: 

0.860 0.092 * 0.004 0.722 f 0.009 - 1.13 f 0.11 - 4.67 f 0.07 0.019 f 0.005 0.022 * 0.010 
0.880 0.072 & 0.004 0.687 f 0.008 - 0.78 f 0.06 - 4.43 f 0.05 0.027 f 0.004 0.029 f. 0.015 
0.900 0.104 0.008 f 0.681 f 0.016 - 1.08 f 0.15 - 4.38 f 0.10 0.042 f 0.010 0.038 f 0.018 
0.920 0.109f0.004 0.641&-0.011 -l.lO*O.lO -4.llf0.09 0.048&0.011 0.051+0.016 
0.930 0.110 f 0.003 0.620 * 0.013 - 1.11 f 0.10 - 3.99 f 0.09 0.055 f. 0.008 0.059 + 0.019 
0.940 0.150~0.011 0.625 f0.021 - 1.40f0.16 -4.00*0.13 0.062&0.016 0.068*0.024 
0.945 0.142 & 0.012 0.608 f 0.021 - 1.34 f 0.17 - 3.90 f 0.13 0.064 f 0.016 0.078 f 0.023 
0.950 0.151 *0.015 0.593 kO.032 - 1.46kO.17 -3.81 j10.18 0.083 kO.015 0.077f0.031 
0.960 0.171 f0.024 0.551 kO.054 - 1.54kO.19 - 3.58kO.28 0.092*0.021 0.085&0.034 
0.970 0.202*0.048 0.476kO.137 - 1.76*0.33 - 3.17kO.77 0.096f0.033 0.101 kO.045 

TABLE III. Vapor-liquid coexistence data from Gibbs ensemble Monte Carlo simulations of N = 5 12 square- 
well molecules with a potential range of/z = 1.5. See Table I for details. 

T* P: P: E: ET p: p: 

1.00 0.038 f 0.001 0.659 f 0.006 - 0.55 f 0.02 - 5.18 f 0.05 0.031 f 0.001 0.031 f 0.009 
1.05 0.053 f 0.002 0.632 f 0.007 - 0.72 f 0.04 - 4.96 * 0.06 0.042 f 0.002 0.044 f 0.012 
1.08 0.051 f 0.004 0.599 f 0.015 - 0.66 f 0.08 - 4.63 f 0.11 0.043 f 0.003 0.052 f 0.017 
1.10 0.058 * 0.003 0.579 f 0.017 - 0.68 f 0.08 - 4.42 f 0.12 0.047 f 0.003 0.056 & 0.021 
1.12 0.078 f 0.004 0.567 f 0.018 - 0.95 f 0.08 - 4.45 f 0.13 0.069 f 0.005 0.063 f 0.024 
1.15 0.092 f 0.009 0.535 f 0.022 - 1.12 f 0.11 - 4.23 f 0.14 0.074 f 0.009 0.078 f 0.028 
1.18 0.133 f. 0.010 0.503 f 0.022 - 1.52 f 0.12 - 4.01 f 0.14 0.090 + 0.014 0.087 f 0.035 
1.20 0.147 & 0.017 0.448 f 0.040 - 1.62 f 0.17 - 3.66 f 0.24 0.111 f 0.020 0.096 f 0.041 

TABLE IV. Vapor-liquid coexistence data from Gibbs ensemble Monte Carlo simulations of N = 5 12 square- 
well molecules with a potential range of/z = 1.75. See Table I for details. 

T* P: P: E: E: p: p: 

1.55 0.048 0.004 f 0.537 f 0.013 - 0.86 + 0.11 - 6.14 + 0.13 0.056 f. 0.004 0.058 f 0.017 
1.57 0.053 f 0.005 0.529 f 0.014 - 0.93 f 0.12 - 6.05 + 0.15 0.051 of: 0.007 0.062 f. 0.024 
1.60 0.059 f 0.004 0.514 f 0.018 - 1.04 f 0.11 - 5.89 f 0.18 0.060 ~fr 0.007 0.064 f 0.027 
1.62 0.062~0.004 0.503 kO.018 - 1.06-j=O.l1 - 5.78kO.18 0.070~0.006 0.075 *0.031 
1.65 0.071 * 0.005 0.483 f 0.019 - 1.18 f 0.12 - 5.57 f 0.18 0.071 f 0.010 0.086 f 0.033 
1.68 0.104 k 0.005 0.489 * 0.008 - 1.73 f 0.09 - 5.62 f 0.09 0.095 f 0.016 0.105 f 0.028 
1.70 0.106~0.007 0.474-&0.010 - 1.73kO.12 -5.46&0.10 0.112~0.018 0.111 kO.029 
1.72 0.116 f 0.004 0.457 f 0.012 - 1.86 f 0.09 - 5.30 f 0.11 0.128 f 0.018 0.126 f 0.032 
1.73 0.118~0.008 0.445*0.013 -1.87f0.12 -5.17&0.13 0.131*0.020 0.132*0.035 
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FIG. 5. The temperature-density vapor-liquid coexistence curve for a 
square-well fluid with a potential range of/2 = 2. See the caption of Fig. 1 for 
more details. The dashed curve is obtained from VDW mean-field theory 
(Ref. 39). 

rate hard-sphere equation of state of Carnahan and Star- 
ling’* together with a mean-field attractive term; this is es- 
sentially the van der Waals (VDW) equation of state for the 
square-well fluid of de1 Rio and co-workers.3~39 The VDW 
approximation underestimates the critical temperature at 
T: = 2.64 and overestimates the critical density at 
p: = 0.249. Although the mean-field coexistence curve is in 
poor agreement with the simulation data close to the critical 
temperature it provides a reasonable description of the va- 
por-liquid equilibria for temperatures far enough from the 
critical point ( T * < 2.4). This is not unexpected for a square- 
well fluid with long-range interactions such as ;1 = 2 since in 
the limit of infinite range the square-well potential is well 
described by the VDW approximation. The validity of this 
approximation for the coexistence curve of the system with 
;1= 3 has also been noted in a separate study by Benavides et 
a1.39 The discrepancy between the VDW theory and simula- 
tion is more marked for the systems with the smaller values 
of R. By using higher-order perturbation theories (see for 
example Refs. 36-39), a better representation of the vapor- 
liquid coexistence curves of short-range square-well fluids 
can be achieved. 

In order to verify the adequacy of the principle of corre- 

sponding states for the square-well fluids with different val- 
ues of& the coexistence curves of Figs. l-5 have been replot- 
ted in terms of the reduced variables T, = T/T, and 
pr = p/p= in Fig. 6. It is clear that the principle holds moder- 
ately well for systems with small values of il; the coexistence 
curves for II = 1.25, 1.375, 1.5, and 1.75 are shown as the 
solid curves with progressively larger widths. It breaks 
down, however, for the longer range potential with /z = 2 
(dotted curve) corresponding to a more pointed curve in the 
proximity of the critical point. This suggests that the princi- 
ple of corresponding states can describe the separate beha- 
viors of systems with small and large A but cannot simulta- 
neously describe both. Also shown as the dashed curve in 
Fig. 6 is the vapor-liquid equilibria obtained from mean- 
field theory (cf. Fig. 5). The overall shapes of the coexis- 
tence curves change from the cubic character of the system 
with ;1= 1.25 to the quadratic character of the system with 
A = 2. 

The critical pressures of the square-well fluids can be 
obtained from the simulation results by fitting Eq. (9) to the 
vapor-pressure data. The logarithm of the vapor pressure is 
plotted as a function of the reciprocal temperature for the 
systems with;1 = 1.25, 1.375, 1.5, 1.75, and 2 in Fig. 7. Here, 
the pressures of the vapor (squares) and liquid (solid 
squares) are shown; the pressures of the coexisting phases 
calculated from the Gibbs ensemble simulations are close 
but not exactly equal to each other. The straight lines shown 
on the figure represent a least-squares fit of Eq. (9) to the 
data and from these the critical pressures can be estimated. 
The results obtained for the systems with different values of 
;I are summarized in Table VI. For the system with R = 2, 
close proximity to the critical point could not be simulated 
and the error in the estimated value of the critical pressure is 
expected to be quite large. In order to check the value of 
critical pressure obtained for this system, an additional NVT 
Monte Carlo simulation was performed for Tr = 2.764 and 
pr = 0.225 corresponding to the critical point. A critical 
pressure of P, = 0.210 f 0.006 was obtained by determin- 
ing the contact values of the radial distribution function; this 
result is in good agreement with the value of 
P r = 0.197 & 0.026 obtained from the Clausius-Clapeyron 
plot (Fig. 7). 

The values of the critical constants estimated from the 
simulation data are summarized in Table VI, and a compari- 

TABLE V. Vapor-liquid coexistence data from Gibbs ensemble Monte Carlo simulations of N = 512 square- 
well molecules with a potential range of 1 = 2. See Table I for details. 

T* P: P: E: E: p: pt 

2.35 0.085 f 0.005 0.571 f 0.007 - 1.90 f 0.08 - 9.42 0.11 f 0.110 0.010 f 0.120 0.019 f 
2.45 0.106 & 0.005 0.521 f 0.008 - 2.32 f 0.05 - 8.62 0.14 f 0.128 0.016 f 0.135 0.024 f 
2.50 0.108 f 0.010 0.489 f 0.008 - 2.31 f 0.10 - 8.12 0.13 f 0.141 0.018 f 0.132 0.025 f 
2.52 0.107 f 0.010 0.472 f 0.019 - 2.21 f 0.15 - 7.87 0.18 f 0.144 0.017 * 0.150 0.032 & 
2.53 0.107 f 0.008 0.466 f 0.011 - 2.29 f 0.09 - 7.77 0.17 f 0.147 0.015 f 0.149 0.029 f 
2.54 0.098 f 0.011 0.447 f 0.014 - 2.00 f 0.21 - 7.49 0.22 f 0.146 0.016 f 0.155 0.038 f 
2.56 0.106 f 0.010 0.457 f 0.017 - 2.16 & 0.16 - 7.63 0.27 f 0.150 0.017 f 0.160 0.041 f 
2.57 0.110~0.010 0.431 *to.014 -2.31 kO.11 -7.23*0.20 0.153*0.020 0.158~0.040 
2.58 0.120 -&0.008 0.428 kO.011 -2.51 *to.09 - 7.19f0.17 0.156f0.025 0.162~0.&0 

J. Chem. Phys., Vol. 96, No. 3,1 February 1992 



Vega &al.: Phase equilibria of the square-well fluid 2303 

TABLE VI. The critical temperature Ty, pressure Pr, density p:, compressibility factor Z,, and exponent p estimated from the Gibbs ensemble Monte 
Carlo (MC) data for square-well fluids with variable potential ranges R. The fitted values of 4, C, , A, and Bare also given. The errors are estimated from the 
respective errors in the densities of the coexisting vapour and liquid phases. Also shown in the table are the corresponding values obtained from second-order 
perturbation theory (PT) (Ref. 30). 

R T: p: PF ZC B BO G A B 

1.250 MC 0.764 f 0.004 0.081 f 0.015 0.370 0.023 f 0.29 0.07 f 0.28 f 0.04 1.35 f 0.13 0.56 f 0.16 4.95 - 5.70 
PT 0.913 0.133 0.34 0.43 

1.375 MC 0.974 f 0.010 0.105 f 0.023 0.355 0.045 f 0.30 0.11 f 0.25 f 0.07 1.10 f 0.17 0.40 f 0.48 9.99 - 11.93 
PT 1.11 0.148 0.34 0.39 

I.500 MC 1.219*0.08 0.108 f0.016 0.299*0.023 0.30f0.07 0.30 f 0.02 1.04 f 0.04 0.27 f 0.13 3.67 - 7.19 
PT 1.35 0.153 0.31 0.36 

1.750 MC 1.811 f 0.013 0.179 f 0.020 0.284 0.009 f 0.35 0.05 f 0.34 f 0.02 0.95 f 0.01 0.04 f 0.03 5.79 - 13.60 
PT 2.04 0.196 0.25 0.38 

2.ooO MC 2.764 f 0.023 0.197 f 0.026 0.225 f 0.018 0.32 0.07 j, 0.53 f 0.11 1.31 f0.12 0.72 f 0.08 1.50 - 8.63 
PT 2.88 0.255 0.24 0.37 

son is made with the corresponding results obtained from 
second-order thermodynamic perturbation theory.30 The 
perturbation theory provides only a reasonable description 
of the simulation values with improving agreement as /2 is 
increased. Carley 33 has used radial distribution functions 
calculated from integral equation theory together with first- 
order perturbation theory to solve for phase coexistence in 
the system with R = 1.5, and has obtained critical point val- 
ues of Tr = 1.35 and &’ = 0.30 f 0.023. The value for the 
critical density compares favorably with the Gibbs ensemble 
estimate of pr = 0.299 f 0.023, but the result obtained for 
the critical temperature is considerably higher than the sim- 
ulation value of TT = 1.219 f 0.008. 

Perhaps the most interesting result is the change in the 
shape of the coexistence curve as the range is increased. The 
systems withal = 1.25,1.375,1.5, and 1.75 haveanear-cubic 
shape with apparent critical exponents close to the universal 
value of/3 = 0.325. A small increase in the critical exponent 
is, however, apparent. These results are in good agreement 

with the value of p = 0.33 obtained for the system with 
R = 1.85 from numerical studies using the YBG integral 
equation 17-*’ although a more accurate analysis has suggest- 
ed that the equation does not exhibit a true critical 
point.23-26 For the system with R = 2 the shape of the coexis- 
tence curve is nearly quadratic corresponding to the classical 
mean-field value of p = 0.5. In order to ensure that this re- 
sult is not due the small system size of N = 5 12, a larger 
system of N= 1000 was also examined; the resulting data 
were very similar to that of the smaller system. In the case of 
the square-well fluid with il = 3 studied by Benavides et 
a1.,39 the appare n t c ritical exponent estimated from the sim- 
ulation data has increased top = 0.77 f 0.15. If their data is 
analyzed using Eq. (8) the best-fitted parameters are 
T~=11.68~0.15,p~=0.181f0.010,~=0.77f0.15, 
Be = 1.32 + 0.06, and C2 = 0.43 f 0.03. It must be noted, 
however, that since the temperatures investigated for this 
system are far from the critical value (0.5 < T/T, < 0.8)) it 
is difficult to estimate the critical constants and exponents. 

Existing Gibbs ensemble simulation data for the phase 
equilibria of the Lennard-Jones,49r’o hard-core two- 
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FIG. 6. The vapor-liquid coexistence curves for square-well fluids with 
variable potential range A plotted in terms of the reduced temperature 
T, = T/T, and density p, =p/pc. The solid curves with progressively 
larger widths represent the systems with ,l = 1.25, 1.375, 1.5, and 1.75; the 
dotted curve represents the coexistence curve for the system with R = 2. 
Also shown as a dashed curve is the coexistence curve obtained from VDW 
mean-field theory (Ref. 39). 
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Yukawa,56 and the Gay-Berne5* fluids have been reana- 
lyzed using Eq. (8) as described in Sec. III. Best fits to the 
simulation data were obtained with the following values of 
the parameters: T: = 1.321 f 0.005, p: = 0.321 f 0.017, 
fl= 0.36 f 0.05, B0 = 1.11 f 0.05, and C, = 0.20 f 0.07 
for the Lennard-Jones fluid; T$ = 1.294 f 0.009, 
/.I: = 0.342 f 0.021, /? = 0.33 f 0.08, B, = 1.07 f 0.07, 
and C, = 0.12 & 0.04 for the hard-core two-Yukawa fluid; 
and T,* = 0.488 f 0.004, p: = 0.101 f 0.009, 
fl= 0.32 f 0.03, &, = 0.43 f 0.03, and C, = 0.16 f 0.05 
for the Gay-Berne fluid. The estimated values of the appar- 
ent critical exponent indicate that the shapes of the coexis- 
tence curves were nearly cubic for these three systems. A 
considerable amount of care must be taken in determining 
values of the critical points and critical exponents; a small 
change in the critical exponent can make quite a significant 
difference on the estimated values of the critical constants. 
For example, in obtaining the critical point of water from 
Gibbs ensemble simulation data, de Pablo et a1.6’ state that a 
classical critical exponent with a fixed value of /3 = 0.5 was 
used. Their results would have been quite different had they 
used the correct universal value of p = 0.325. 
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