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We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor
using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially
perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equi-
librate and subsequently induce a sudden volume expansion, followed with NV T simulations. The
resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-
like particles tangentially aligned at the surface and an overall nematic orientation along the main
axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation,
κ . For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, max-
imizing their distance along this same axis. For sufficiently high κ , the shape of the drop becomes
singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this
reflects a transition from a spheroidal to a spindle-like drop. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4733974]

I. INTRODUCTION

Drops of nematic liquid crystal form the basis of many
privacy windows and other electro-optic devices. Examples
include polymer dispersed liquid crystals, which are able to
switch between scattering and transparent states after appli-
cation of an external electric field,1 and holographic polymer
dispersed liquid crystals, which are based on an organized dis-
tribution of the drops and can switch between diffracting and
transparent states.2–5

Drops of nematic liquid crystal are also fascinating sys-
tems where geometrical frustration is at play; the topological
constraints imposed by the spherical-like shape of the drop
prevent the local order favored by physical interactions from
being maintained everywhere in the drop. As a result, there
are defects in the order, which are spatial regions where the
nematic director is undefined. There are many possible con-
figurations for either tangential or perpendicular alignment of
the rod-like molecules at the bounding surface,1 and it is min-
imization of the free energy which ultimately determines the
nematic arrangement in the drop and thus the number and type
of defects that characterizes it. In some situations, the shape of
the drop is fixed, because the surrounding media is polymer-
ized. In addition, even if this is not the case, surface tension
tends to make everything spherical. However, since the sem-
inal work by Bernal and Fankuchen on plant virus tactoids6

there is experimental evidence indicating that the shape of a
nematic drop can change either if it is small enough7 or if
external electric fields are applied;8 this suggests an interest-
ing interplay between minimization of the free energy and the
shape of the drop. Continuum theory has been extensively ap-
plied in the literature to predict the shape of nematic drops.9–16

It is essentially the ratio between surface and elastic energies,
� = γV 1/3/K , with K a bulk Frank elastic constant, γ the

interfacial tension of the coexisting phases, and V the vol-
ume of the drop, what determines whether the drops remain
spherical or not. For � < 1, drops are elongated, while for
� � 1, they are spherical. Additionally, the nematic texture
in the drop is governed by the surface anchoring strength ω,
which measures the anisotropy of surface tension with respect
to the nematic surface anchoring, if tangential anchoring is
favored.15, 16 For small ω, there is no preference in the an-
choring direction and the nematic texture is almost homoge-
neous, having no defects in the ordering; only for small �

may the surface develop cusps, which are points on the sur-
face with undefined curvature. For large ω, there is a strong
preference for tangential anchoring and the nematic texture
becomes bipolar. The nematic configuration is characterized,
in this case, by the presence of two point defects on the sur-
face, referred to as boojums, which maximize their distance
by locating themselves a drop diameter away from each other.

Formation of drops of spherical particles interacting
with a Lennard-Jones potential has been extensively studied
theoretically17, 18 and by computer simulations since the pi-
oneering work of Thompson et al.,19 see for instance.20–27 In
the case of nematic drops, most computer simulations are per-
formed on spherical nematic drops.28–31 The shape is imposed
and is not allowed to change. However, computer simulations
addressing the formation of nematic drops in monocomponent
nematogens in equilibrium with its vapor and from binary
mixtures of spherical and rod-like particles indicate that the
drops are non-spherical.32–36 Despite these results are sugges-
tive of the interplay between nematic order and drop shape,
this relationship still remains to be explored in the absence of
external forces.

In this paper, we perform computer simulations of a
Gay-Berne fluid in the nematic-vapor coexistence region,

0021-9606/2012/137(3)/034505/7/$30.00 © 2012 American Institute of Physics137, 034505-1
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where nematic drops coexist with their vapor, and correlate
the nematic order inside the drops with their shape. We
evaluate the inertial tensor of the drops and their order
parameter and describe the results for different values of the
molecular elongation, κ , defined as the ratio between the
center-to-center distance between the rod-like molecules in
the end-to-end and side-by-side configurations. Since the
phase behavior of the Gay-Berne fluid is only well docu-
mented for κ = 3,37 we perform additional “zero-pressure”
simulations to obtain nematic-vapor coexistence regions at
higher κ . Our results open new ways to generate nematic
drops for further simulation studies.

II. COMPUTER SIMULATIONS

A. Previous simulation results with
Gay-Berne interactions

The Gay-Berne potential38 is the most common general-
ization of the Lennard-Jones potential for describing the in-
teraction between rod-like particles:

Uij (rij , ui , uj ) = 4ε(r̂ij , ui , uj )
[
ρ−12

ij − ρ−6
ij

]
, (1)

where

ρij = rij − σ (r̂ij , ui , uj ) + σ0

σ0
(2)

with ui the unit vector along the symmetry axis of particle
i, rij = |ri − rj| the distance along the intermolecular vec-
tor rij joining the centers of mass of particles i and j, and
r̂ij = rij /rij . The anisotropic contact distance, σ (r̂ij , ui , uj ),
and the depth of the interaction energy, ε(r̂ij , ui , uj ), depend
on the orientational unit vectors, the length-to-breadth ratio
of the particle, κ = σ ee/σ ss, and the energy depth anisotropy,
κ ′ = εee/εss, which are both defined as the ratio of the size
and energy interaction parameters in the end-to-end (ee) and
side-by-side (ss) configurations, respectively. Their expres-
sions are given in terms of an arbitrary length scale, σ 0, and
an arbitrary energy scale, ε0:

σ (r̂ij , ui , uj )

σ0
=

[
1 − χ

2

(
(r̂ij · ui + r̂ij · uj )2

1 + χ (ui · uj )

+ (r̂ij · ui − r̂ij · uj )2

1 − χ (ui · uj )

)]−1/2

, (3)

ε(r̂ij , ui , uj )

ε0
= [ε1(ui , uj )]ν × [ε2(r̂ij , ui , uj )]μ, (4)

where

ε1(ui , uj ) = [1 − χ2(ui · uj )2]−1/2 (5)

ε2(r̂ij , ui , uj ) = 1 − χ ′

2

[
(r̂ij · ui + r̂ij · uj )2

1 + χ ′(ui · uj )

+ (r̂ij · ui − r̂ij · uj )2

1 − χ ′(ui · uj )

]
(6)

with χ = (κ2 − 1)/(κ2 + 1) and χ ′ = [(κ ′)1/μ − 1]/[(κ ′)1/μ

+ 1]. As in the original paper of Gay and Berne,38 we choose

μ = 2 and ν = 1. Fixing these parameters leaves an interac-
tion potential that depends on the additional two parameters, κ
and κ ′. κ is a measure of the length-to-breadth ratio of the par-
ticle. As a result, κ > 1 corresponds to prolate particles while
κ < 1 corresponds to oblate particles. κ ′ plays an important
role in the formation of ordered phases, as it determines the
relative importance of side-by-side over end-to-end configu-
rations. Consistent with this, Gibbs ensemble39 and Gibbs-
Duhem40, 41 Monte Carlo simulations for κ = 3 find that for
high κ ′, the smectic B phase is the dominant ordered phase
of the Gay-Berne fluid.37 The nematic phase, in this case, is
only stable at temperatures well above the liquid-vapor crit-
ical temperature, Tc, and for a narrow range of densities. By
contrast, for low κ ′, the nematic phase is stable well below
the liquid-vapor critical temperature and for a broader range
of densities. In this case, the nematic phase can coexist with
a vapor phase within the temperature range: T2 < T < T1,
where T1 is the temperature of the vapor-liquid-nematic triple
point and T2 is the temperature of the vapor-nematic-smectic
B triple point. A suitable selection of κ ′ for the elongation
considered in these simulations, κ = 3, thus enables coexis-
tence of nematic and vapor phases. Unfortunately, results for
other values of κ are not available in the literature.

We note that with our parametrization, the Gay-Berne
molecules show planar anchoring in the vapor-nematic
interface.42 However, by using other set of Gay-Berne param-
eters, homeotropic anchoring can be promoted.33, 43, 44 This
has also been observed in lattice liquid crystal models.45

B. Simulation procedure to generate nematic drops

Our most realistic representation of a nematic drop with-
out shape constraints consists of a large enough amount of
nematic phase in equilibrium with its vapor. The Gay-Berne
phase behavior provides natural ways to achieve this for κ = 3
and low κ ′. We follow existent simulation work37 and perform
isothermal-isobaric Monte Carlo simulations (NPT − MC)
to generate a nematic phase right on the nematic-vapor
coexistence curve. We could perform additional simulations
of this type to map the phase boundaries for other values
of κ . However, we have chosen an alternative, faster route
based on the so called “zero-pressure” simulation.46 The
method consists in locating the system in a region of the
phase diagram with T2 < T < T1 and with a density that
is larger than the nematic-vapor coexistence density at the
selected temperature. By performing NPT − MC computer
simulations at P = 0, the system evolves towards decreasing
its density, but in the process it encounters the nematic-vapor
coexistence curve. If the simulations are short, we prevent the
system from undergoing large fluctuations in volume, and the
system is forced to remain right at the coexistence curve at
the nematic density. We achieve this by selecting a maximum
trial volume change, �V , that is small enough but adjusted
to get a volume change acceptance ratio of about 30%. A
snapshot of the system in this situation is shown in the top
panel of Fig. 1 for κ = 4, κ ′ = 0.5, and T = 1.00. Hereafter we
use reduced units, where T is in units of ε0/kB. By modifying
the values of T and κ ′, we are able to find other situations
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FIG. 1. Snapshots of the MC simulations for κ = 4, κ ′ = 1, and T = 0.5.
The top panel corresponds to the NPT − MC bulk simulations for P = 0.0.
The bottom panel is obtained in the subsequent NV T simulations (see text).
In this case a nematic drop forms in coexistence with its vapor.

of nematic-vapor equilibrium. We follow this approach for κ

= 4 and κ = 6. For κ = 3, we use existent simulation results
to find the values of T, for κ ′ = 1, where the nematic coexists
with its vapor. We summarize all the parametric situations
used in our studies in Table I, and emphasize we always use
a fixed number of particles of N = 4000.

When the final configuration of these “zero pressure”
simulations is reached, we significantly enlarge the simulation
box and perform additional NV T − MC simulations to allow
the system to equilibrate with its vapor. This provides the de-
sired nematic drop in coexistence with its vapor, as shown in
the bottom panel of Fig. 1 and also in Figs. 2 and 3 for dif-
ferent values of κ , κ ′ and T. Very long runs are necessary to
stabilize the drops; in all the three cases shown in Figs. 1–3,
we needed more than 107 cycles, where each cycle consists of
N attempted particle translations and rotations. We also note
that since we use periodic boundary conditions, the volume of
the simulation box must be large enough to prevent interac-
tions between particles in the drop with their periodic images,
but small enough to prevent a large number of molecules from
escaping from the drop to the vapor phase. Nevertheless, the
latter constraint is not dramatic due to the small density of

TABLE I. Phase states considered in this work, and eccentricities corre-
sponding to the drops generated under the indicated conditions.

κ κ ′ T Phase e

3 1.0 0.66 Isotropic 1.02(1)
3 1.0 0.59 Nematic 1.38(1)
3 1.0 0.55 Nematic 1.46(1)
4 1.0 0.70 Nematic 1.68(1)
4 1.0 0.60 Nematic 1.82(1)
4 1.0 0.50 Nematic 1.94(1)
4 0.5 1.40 Nematic 1.39(1)
4 0.5 1.30 Nematic 1.51(1)
4 0.5 1.20 Nematic 1.65(1)
4 0.5 1.10 Nematic 1.90(1)
4 0.5 1.00 Nematic 2.04(1)
6 0.5 1.60 Nematic 2.10(2)
6 0.5 1.50 Nematic 2.14(2)
6 0.5 1.40 Nematic 2.20(2)
6 0.5 1.30 Nematic 2.22(1)
6 0.5 1.20 Nematic 2.24(1)
6 0.5 1.10 Nematic 2.26(3)
6 0.5 1.00 Nematic 2.28(1)

the vapor phase compared to the density of the correspond-
ing coexisting isotropic liquid or nematic phase; note that all
considered temperatures are well below the vapor-isotropic
critical point. In fact, for all the considered cases, less than
10% of the particles are in the vapor, with all drops having
essentially the same number of particles.

We note that we choose low values of κ ′, as in this situa-
tion the nematic-vapor coexistence region is larger. It is then
easier in this case to obtain nematic droplets coexisting with
its vapor, which is what we are interested in studying from a
simulation point of view.

C. Calculating drop shape and nematic order

To characterize the shape of the drops, we calculate the
inertial tensor and diagonalize it to obtain its eigenvalues and

FIG. 2. Drop snapshot for κ = 3, κ ′ = 1, and T = 0.55.
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FIG. 3. Drop snapshot for κ = 6, κ ′ = 0.5, and T = 1.5.

principal moments of inertia: I1, I2, and I3, expressed in units
of mσ 2

0 , with m the mass of a molecule.
To compare the shapes of different drops, we calculate

the eccentricity, e. Assuming an ellipsoidal shape:

e =
√

I1 + I2

I3
− 1, (7)

where I3 is the lowest principal moment of inertia of all three,
as shown in the schematic of Fig. 4.

We quantify the global nematic ordering by first calculat-
ing the tensor order parameter:

Q =
〈

1

N

N∑
i=1

3ui ⊗ ui − I

2

〉
(8)

and by then choosing the larger positive eigenvalue of the ten-
sor order parameter, S, as the representative measure of the
global nematic order. We note that, with this selection, the di-
rector of the phase would correspond to the associated eigen-
vector, n.

We also characterize the shape and nematic texture within
the drop by calculating density and orientational profiles. We
divide the drop along its major axis, which we label z, into
circular rings of width �z. Every slice is further divided into
circular shells of average radius r and width �r. By count-

I

I

I

1

2

3

FIG. 4. Scheme of the nematic drop, where the association of the principal
moments of inertia with the principal axes of the drop is highlighted.

ing the number of particles within each shell, we obtain the
density profile, ρ(r, z):

ρ(r, z) ≡ 1

2πr

〈
N∑

i=1

δ(zi − z)δ(ri − r)

〉
, (9)

where (ri, zi) are, respectively, the instantaneous radial and
axial coordinates of particle i. As usual, we present a reduced
density profile in units of σ−3

0 , and all distances in units of σ 0.
The orientational profile is obtained by calculating the orien-
tational order profile ρ2(r, z), defined as the averaged second
order Legendre polynomial:

ρ2(r, z)

≡ 1

2πrρ(r, z)

〈
N∑

i=1

(
3 cos2 θi − 1

2

)
δ(zi − z)δ(ri − r)

〉
,

(10)

where θ i is the angle between the major axis of molecule i and
the nematic director, n.

III. RESULTS AND DISCUSSION

We find different values of the principal moments
of inertia depending on the length-to-breadth ratio of the
nematogens. For instance, for κ = 3 and T = 0.55, we find
I1 = 108 ± 1, I2 = 111 ± 1, and I3 = 70 ± 1, while for
κ = 4 and T = 1.20, we find I1 = 143 ± 2, I2 = 137 ± 2,
and I3 = 75 ± 2. As a result, I1 ≈ I2 �= I3, indicating the
drops essentially have an axisymmetric shape. Furthermore,
since I3 is the smallest of the three principal moments of
inertia, the drops are essentially prolate ellipsoids, consistent
with the schematic of Fig. 4; this is true for all simulated
nematic droplets. However, for a given κ ′ and T, the droplet
eccentricity increases with κ , as shown in Table I. As a result,
the drops become more elongated as the length-to-breadth
ratio of the molecules increases.

We also find that n is parallel to the eigenvector asso-
ciated to the smallest principal moment of inertia, d, which
provides the direction of the major axis of the drop, as shown
in Fig. 5. This indicates the nematic director lies along the
major axis of the drops; this is true for all values of κ , κ ′, and

0 100000 200000 300000 400000 500000
MC cycles

0.5

0.55

0.6

0.65

n  i,d
 i

n
x

n
y

n
z

d
x

d
y

d
z

FIG. 5. Components of the nematic director and the eigenvector associated
to the smallest eigenvalue of the inertial tensor for κ = 4 and T* = 1.00.
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FIG. 6. Contour plots for the (a) and (c) density and (b) and (d) orientational order profiles for (a) and (b) κ = 3, κ ′ = 1, T = 0.55 and (c) and (d) κ = 6, κ ′
= 0.5, T = 1.1. The density contours correspond to reduced densities in units of σ−3

0 ranging from 0.25 to 0.05 in (a) and from 0.10 to 0.02 in (c). The
orientational order contours correspond to values of ρ2 from 0.7 to 0.1.

T in Table I. Furthermore, we find that this direction remains
almost unchanged throughout the simulation after the initial
equilibration period.

Let us consider in detail the case κ = 3, κ ′ = 1. For
high temperatures, above the vapor-isotropic-nematic triple
point, but below the vapor-isotropic critical point, drops are
expected to be isotropic. Consistent with this, our simulations
for T = 0.66 result in the formation of a drop with e = 1.02,
as shown in Table I. In addition, the orientational order is neg-
ligible everywhere inside the drop. As a result, K = 0 and the
shape is solely determined by surface tension. By contrast, for
a temperature of T = 0.55, which is below the vapor-isotropic-
nematic triple point, the resultant drop exhibits nematic or-
dering and an eccentricity of e = 1.48. Visual inspection of
drop snapshots (see Fig. 2) shows that the molecules orient
preferentially along the major axis of the drop and tangen-
tially at the nematic-vapor interface. However, near the end
of the drop along its major axis, the nematic order is lost to
a large extent: this is an indication of the presence of the two
boojums required for topological reasons, which as expected,
maximize their separation by locating themselves along the
major axis of the droplet. Thus, in this case, the drop is of
bipolar character.

To characterize more quantitatively our results, we ana-
lyze the density and orientational order profiles. Figures 6(a)
and 6(b) show the contour plots for ρ and ρ2, respectively. On
the one hand, the density profile confirms that the drop shape
is nearly elliptical, with ρ approaching its value in the vapor
phase in a narrow region close to the drop boundary. On the
other hand, the orientational profiles indicate that the orienta-
tional order is very different in the equatorial plane and near
the poles of the drop. Figure 7 shows the projections of the
density and orientational order profiles in the equatorial plane
(z = 0) and near the poles (z = ±18). For z = 0, both ρ and ρ2

take maximum and constant values of ρ ∼ 0.3 and ρ2 ∼ 0.8
up to the nematic-vapor interface of the drop. At this point
both ρ and ρ2 simultaneously decay down to their bulk vapor
values. However, near the edges of the drop, for z = ±18,
near its major axis, r = 2, the orientational order shows a

major reduction to values slightly below 0.2; this is consistent
with the presence of the surface boojums of the drop.

As κ is increased, we observe that the shape of the drop
changes to a spindle-like shape (see Figs. 1 and 3). This is
indeed confirmed by the analysis of the density and orienta-
tional order parameter contour plots in Figs. 6(c) and 6(d) for
κ = 6. In these cases, we find that the isodensity lines are
much straighter near the drop edges compared to the κ = 3
case [see Figs. 6(c) and 6(d)]. In addition, there is a change in
the nematic texture as the molecules close to the edges now
are oriented preferentially along the main axis of the drop,
which is characteristic for an almost homogeneous nematic
texture. The differences between drops with different κ are
easier to appreciate by plotting the density and the orienta-
tional order parameter profiles corresponding to the center (z
= 0) and edges of the drop. As for the κ = 3 case shown pre-
viously, for z = 0, both ρ and ρ2 take their maximum values,
as expected. Near the edges, however, we observe that the ori-
entational order progressively increases with κ; ρ2 ∼ 0.2 for
κ = 3, as shown in Fig. 7, ρ2 ∼ 0.3–0.4 for κ = 4, as shown
in Fig. 8, and ρ2 ∼ 0.8 for κ = 6, as shown in Fig. 9. This

4 8 12 16 20
r

0

0.2

0.4

0.6

0.8

1

ρ,
ρ 2

ρ(r,z=18)
ρ

2
(r,z=18)

ρ(r,z=-18)
ρ

2
(r,z=-18)

ρ(r,z=0)
ρ

2
(r,z=0)

FIG. 7. Density and orientational order profiles at the center (z = 0) and near
the edges of a drop for κ = 3, κ ′ = 1, and T = 0.55. All distances are in units
of σ 0.
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FIG. 8. The same as Fig. 7 for κ = 4, κ ′ = 1, and T = 0.7.

indicates that with increasing κ , there is a crossover from a
bipolar texture to an almost homogeneous texture, driven by
the increase of the drop eccentricity. The drop thus transitions
from spheroidal to spindle-like for sufficiently large values
of κ .

This trend is consistent with expectations from con-
tinuum theory, if the Frank elastic constants increase with
increasing κ . In this case, � would decrease, provided the
interfacial tension remains unaltered, resulting in more elon-
gated droplets. However, the values of K for Gay-Berne simu-
lations have only been calculated for κ = 3.47, 48 As a result, it
is not known at this stage if K changes with κ and/or the form
of this dependence. Furthermore, the values of K from these
simulations correspond to bulk materials and it is not obvious
whether these will change as the system size decreases. Sim-
ilarly, for the interfacial tension, it is also not known whether
it changes or not with κ; the only available values of γ are
known for the single case of κ = 3.49 In this case, however,
there is evidence from Lennard-Jones simulations that γ

depends on whether the interface is planar or spherical.50 All
these facts prevent a direct comparison between our simu-
lation results and expectations based on continuum model
approaches; this would require the calculation of the Frank
elastic constants and interfacial tension as a function of κ ,
for systems of different size with boundaries of different
curvature.
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FIG. 9. The same as Fig. 7 for κ = 6, κ ′ = 0.5, and T = 1.1.

IV. CONCLUSIONS

We have performed computer simulations of nematic
drops composed of interacting Gay-Berne rod-like molecules
in coexistence with their vapor. We find that the drops are
in general non-spherical, but elongated. For small length-to-
breadth ratio of the molecules, κ , the drops are ellipsoidal-like
and the nematic texture in the drop is bipolar. The topologi-
cally required boojums maximize their distance and arrange
themselves on the surface of the drop along the major axis of
the ellipsoid, with a director field that is on average parallel
to this axis. We find that increasing κ results in more elon-
gated drops, with a spindle-like shape characterized by the
presence of cusps at both poles of the drop and a nematic tex-
ture reminiscent of an almost homogeneous state. The tran-
sition from the bipolar to the homogeneous configuration of
the drop seems to be smooth, in agreement with theoretical
predictions15, 16 and similar to that observed for mixtures of
hard rods and spheres.36 However, the absence of good esti-
mates for surface tensions and elastic constants in the Gay-
Berne model prevents a direct comparison of our simulation
results with theoretical expectations. Nevertheless, our results
can serve as the starting point for additional studies, for ex-
ample, in the presence of external forces.

ACKNOWLEDGMENTS

L.F.R. wishes to thank Professor van der Schoot for
helpful comments. L.F.R. and J.M.R.-E. acknowledge finan-
cial support from the Spanish MICINN through Grant No.
FIS2009-09326, and Junta de Andalucía through Grant No.
P09-FQM-4938, both co-funded by the EU FEDER. A.F-N.
thanks NSF for CAREER Award DMR-0847304.

1P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore,
1995).

2D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, Appl.
Phys. Lett. 82, 2610 (2003).

3A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, Appl. Phys. Lett. 88,
121911 (2006).

4R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W.
Adams, Appl. Phys. Lett. 64, 1074 (1994); T. J. Bunning, L. V. Natarajan,
V. P. Tondiglia, and R. L. Sutherland, Annu. Rev. Mater. Sci. 30, 83 (2000).

5C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, Appl.
Phys. Lett. 79, 9 (2001); M. Jazbinsek, I. Drevensek, M. Zgonik, A. K.
Fontecchio, and G. P. Crawford, J. Appl. Phys. 90, 3831 (2001).

6J. D. Bernal and I. Fankuchen, J. Gen. Physiol. 25, 111 (1941).
7A. S. Sonin, Colloid J. USSR 60, 129 (1998).
8B. I. Lev, V. G. Nazarenko, A. B. Nych, D. Schur, P. M. Tomchuk, J.
Yamamoto, and H. Yokoyama, Phys. Rev. E 64, 021706 (2001).

9C. Herring, Phys. Rev. 82, 87 (1951).
10S. Chandrasekhar, Mol. Cryst. 2, 71 (1966).
11R. D. Williams, Rutherford Appleton Laboratory Report No. RAL-85-028,

1985 (unpublished).
12E. G. Virga, Variational Theories for Liquid Crystals (Chapman and Hall,

London, 1994).
13A. V. Kaznacheev, M. M. Bogdanov, and S. A. Taraskin, J. Exp. Theor.

Phys. 95, 57 (2002).
14A. V. Kaznacheev, M. M. Bogdanov, and A. S. Sonin, J. Exp. Theor. Phys.

97, 1159 (2003).
15P. Prinsen and P. van der Schoot, Phys. Rev. E 68, 021701 (2003).
16P. Prinsen and P. van der Schoot, Eur. Phys. J. E 13, 35 (2004).
17J. S. Rowlinson and B. Widom, Molecular Theory of Capillary (Oxford

University Press, Oxford, 1982).
18J. S. Rowlinson, J. Phys.: Condens. Matter 6, A1–A8 (1994).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  150.214.182.116 On: Fri, 01 Apr 2016

11:59:21

http://dx.doi.org/10.1063/1.1568818
http://dx.doi.org/10.1063/1.1568818
http://dx.doi.org/10.1063/1.2187430
http://dx.doi.org/10.1063/1.110936
http://dx.doi.org/10.1146/annurev.matsci.30.1.83
http://dx.doi.org/10.1063/1.1383566
http://dx.doi.org/10.1063/1.1383566
http://dx.doi.org/10.1063/1.1405821
http://dx.doi.org/10.1085/jgp.25.1.111
http://dx.doi.org/10.1103/PhysRevE.64.021706
http://dx.doi.org/10.1103/PhysRev.82.87
http://dx.doi.org/10.1080/15421406608083061
http://dx.doi.org/10.1134/1.1499901
http://dx.doi.org/10.1134/1.1499901
http://dx.doi.org/10.1134/1.1641899
http://dx.doi.org/10.1103/PhysRevE.68.021701
http://dx.doi.org/10.1140/epje/e2004-00038-y
http://dx.doi.org/10.1088/0953-8984/6/23A/001


034505-7 Rull, Romero-Enrique, and Fernandez-Nieves J. Chem. Phys. 137, 034505 (2012)

19S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton, R. A. R. Chantry, and
J. S. Rowlinson, J. Chem. Phys. 81, 530 (1984).

20A. G. Meyra, G. J. Zarragaicoechea, and V. Kuz, Fluid Phase Equilib. 235,
191 (2005).

21K. Laasonen, S. Wonczak, R. Strey, and A. Laaksonen, J. Chem. Phys. 113,
9741 (2000).

22K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8451 (1998).
23S. Toxvaerd, J. Chem. Phys. 115, 8913 (2001).
24A. P. Shreve, J. P. R. B. Walton, and K. E. Gubbins, J. Chem. Phys. 85,

2178 (1986).
25V. V. Zakharov, E. N. Brodskaya, and A. Laaksonen, J. Chem. Phys. 107,

10675 (1997).
26L. G. Macdowell, V. K. Shen, and J. R. Errignton, J. Chem. Phys. 125,

034705 (2006).
27M. Salonen, I. Napari, and H. Vehkamaki, Mol. Simul. 33, 15 (2007).
28Y. Trukhina and T. Schilling, Phys. Rev. E 77, 011701 (2008).
29W. Huang and G. F. Tuthill, Phys. Rev. E 49, 570 (1994).
30J. Dzubiella, M. Schmidt, and H. Lowen, Phys. Rev. E 62, 5081 (2000).
31A. P. J. Emerson and C. Zannoni, J. Chem. Soc., Faraday Trans. 91, 3441

(1995).
32M. Tsige, M. P. Mahajan, C. Rosenblatt, and P. L. Taylor, Phys. Rev. E 60,

638 (1999).
33M. A. Bates and G. R. Luckhurst, Struct. Bonding (Berlin) 94, 65

(1999).

34M. A. Bates, Chem. Phys. Lett. 368, 87 (2003).
35R Berardi, A. Conatantini, L. Mucioli, S. Orlandi, and C. Zannoni, J. Chem.

Phys. 126, 044905 (2007).
36Y. Trukhina, S. Jungblut, P. van der Schoot, and T. Schilling, J. Chem. Phys.

130, 164513 (2009).
37E. de Miguel, E. Martin del Rio, J. T. Brown, and M. P. Allen, J. Chem.

Phys. 105, 4234 (1996).
38J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981).
39A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
40D. A. Kofke, Mol. Phys. 78, 1331 (1993).
41M. Dijkstra and D. Frenkel, Phys. Rev. E 51, 5891 (1995).
42E. Martin del Rio and E. de Miguel, Phys. Rev. E 55, 2916 (1997).
43E. Martin del Rio, E. de Miguel, and L. F. Rull, Physica A 213, 138 (1995).
44E. de Miguel and E. Martin del Rio, Int. J. Mod. Phys. C 10, 431 (1999).
45M. A. Bates, Phys. Rev. E 65, 041706 (2002).
46D. Frenkel and B. Smit, Understanding Molecular Simulation, from Algo-

rithms to Applications (Academic, 2002).
47M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, J.

Chem. Phys. 105, 2850 (1996).
48N. H. Phuong, G. Germano, and F. Schmid, J. Chem. Phys. 115, 7227

(2001).
49E. de Miguel, J. Phys. Chem. B 112, 4674 (2008).
50J. G. Sampayo, A. Malijevsky, E. A. Müller, E. de Miguel, and G. Jackson,

J. Chem. Phys. 132, 141101 (2010).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  150.214.182.116 On: Fri, 01 Apr 2016

11:59:21

http://dx.doi.org/10.1063/1.447358
http://dx.doi.org/10.1016/j.fluid.2005.04.022
http://dx.doi.org/10.1063/1.1322082
http://dx.doi.org/10.1063/1.477509
http://dx.doi.org/10.1063/1.1412608
http://dx.doi.org/10.1063/1.451111
http://dx.doi.org/10.1063/1.474184
http://dx.doi.org/10.1063/1.2218845
http://dx.doi.org/10.1080/08927020601178024
http://dx.doi.org/10.1103/PhysRevE.77.011701
http://dx.doi.org/10.1103/PhysRevE.49.570
http://dx.doi.org/10.1103/PhysRevE.62.5081
http://dx.doi.org/10.1039/ft9959103441
http://dx.doi.org/10.1103/PhysRevE.60.638
http://dx.doi.org/10.1007/3-540-68305-4_3
http://dx.doi.org/10.1016/S0009-2614(02)01824-9
http://dx.doi.org/10.1063/1.2430710
http://dx.doi.org/10.1063/1.2430710
http://dx.doi.org/10.1063/1.3117924
http://dx.doi.org/10.1063/1.472292
http://dx.doi.org/10.1063/1.472292
http://dx.doi.org/10.1063/1.441483
http://dx.doi.org/10.1080/00268978700101491
http://dx.doi.org/10.1080/00268979300100881
http://dx.doi.org/10.1103/PhysRevE.51.5891
http://dx.doi.org/10.1103/PhysRevE.55.2916
http://dx.doi.org/10.1016/0378-4371(94)00155-M
http://dx.doi.org/10.1142/S0129183199000322
http://dx.doi.org/10.1103/PhysRevE.65.041706
http://dx.doi.org/10.1063/1.472147
http://dx.doi.org/10.1063/1.472147
http://dx.doi.org/10.1063/1.1404388
http://dx.doi.org/10.1021/jp7095983
http://dx.doi.org/10.1063/1.3376612

