34 research outputs found

    On the effective lagrangian in spinor electrodynamics with added violation of Lorentz and CPT symmetries

    Get PDF
    We consider quantum electrodynamics with additional coupling of spinor fields to the space-time independent axial vector violating both Lorentz and CPT symmetries. The Fock-Schwinger proper time method is used to calculate the one-loop effective action up to the second order in the axial vector and to all orders in the space-time independent electromagnetic field strength. We find that the Chern-Simons term is not radiatively induced and that the effective action is CPT invariant in the given approximation.Comment: 17 pages, LaTeX, v.2, minor changes, Eqs.(5.12) and (5.13) added, misprints correcte

    Exact solutions for Bianchi type cosmological metrics, Weyl orbits of E_{8(8)} subalgebras and p--branes

    Full text link
    In this paper we pursue further a programme initiated in a previous work and aimed at the construction, classification and property investigation of time dependent solutions of supergravity (superstring backgrounds) through a systematic exploitation of U-duality hidden symmetries. This is done by first reducing to D=3 where the bosonic part of the theory becomes a sigma model on E_{8(8)}/SO(16), solving the equations through an algorithm that produces general integrals for any chosen regular subalgebra G_r of E_{8(8)} and then oxiding back to D=10. Different oxidations and hence different physical interpretations of the same solutions are associated with different embeddings of G_r. We show how such embeddings constitute orbits under the Weyl group and we study the orbit space. This is relevant to associate candidate superstring cosmological backgrounds to space Dp-brane configurations that admit microscopic descriptions. In particular in this paper we show that there is just one Weyl orbit of A_r subalgebras for r < 6$. The orbit of the previously found A_2 solutions, together with space--brane representatives contains a pure metric representative that corresponds to homogeneous Bianchi type 2A cosmologies in D=4 based on the Heisenberg algebra. As a byproduct of our methods we obtain new exact solutions for such cosmologies with and without matter. We present a thorough investigation of their properties.Comment: 39 pages, 26 figure

    Effective supergravity descriptions of superstring cosmology

    Full text link
    This text is a review of aspects of supergravity theories that are relevant in superstring cosmology. In particular, it considers the possibilities and restrictions for `uplifting terms', i.e. methods to produce de Sitter vacua. We concentrate on N=1 and N=2 supergravities, and the tools of superconformal methods, which clarify the structure of these theories. Cosmic strings and embeddings of target manifolds of supergravity theories in others are discussed in short at the end.Comment: 12 pages, contribution to the proceedings of the 2nd international conference on Quantum Theories and Renormalization Group in Gravity and Cosmology, Barcelona, July 11-15, 2006, Journal of Physics

    Tits-Satake projections of homogeneous special geometries

    Full text link
    We organize the homogeneous special geometries, describing as well the couplings of D=6, 5, 4 and 3 supergravities with 8 supercharges, in a small number of universality classes. This relates manifolds on which similar types of dynamical solutions can exist. The mathematical ingredient is the Tits-Satake projection of real simple Lie algebras, which we extend to all solvable Lie algebras occurring in these homogeneous special geometries. Apart from some exotic cases all the other, 'very special', homogeneous manifolds can be grouped in seven universality classes. The organization of these classes, which capture the essential features of their basic dynamics, commutes with the r- and c-map. Different members are distinguished by different choices of the paint group, a notion discovered in the context of cosmic billiard dynamics of non maximally supersymmetric supergravities. We comment on the usefulness of this organization in universality classes both in relation with cosmic billiard dynamics and with configurations of branes and orbifolds defining special geometry backgrounds.Comment: 65 pages, LaTeX; v2: added reference; v3: small corrections, section 3.3 modifie

    New Phytologist / The betrayed thief the extraordinary strategy of Aristolochia rotunda to deceive its pollinators

    Get PDF
    Pollination of several angiosperms is based on deceit. In such systems, the flowers advertise a reward that ultimately is not provided. We report on a previously unknown pollination/mimicry system discovered in deceptive Aristolochia rotunda (Aristolochiaceae). Pollinators were collected in the natural habitat and identified. Flower scent and the volatiles of insects (models) potentially mimicked were analyzed by chemical analytical techniques. Electrophysiological and behavioral tests on the pollinators identified the components that mediate the plantpollinator interaction and revealed the model of the mimicry system. The main pollinators of A. rotunda were female Chloropidae. They are food thieves that feed on secretions of true bugs (Miridae) while these are eaten by arthropod predators. Freshly killed mirids and Aristolochia flowers released the same scent components that chloropids use to find their food sources. Aristolochia exploits these components to deceive their chloropid pollinators. Aristolochia and other trap flowers were believed to lure saprophilous flies and mimic brood sites of pollinators. We demonstrate for A. rotunda, and hypothesize for other deceptive angiosperms, the evolution of a different, kleptomyiophilous pollination strategy. It involves scent mimicry and the exploitation of kleptoparasitic flies as pollinators. Our findings suggest a reconsideration of plants assumed to show sapromyiophilous pollination.(VLID)221519

    A Numerical Study of the Relation Between the Acoustic Generator Geometry and the Heat Transfer Conditions

    No full text
    Modern gas turbine systems operate in temperatures ranging from 1200°C to even 1500°C, which creates bigger problems related to the blade material thermal strength. In order to ensure appropriate protection of the turbine blades, a sophisticated cooling system is used. Current emphasis is placed on the application of non-stationary flow effects to improve cooling conditions, e.g., the unsteady-jet heat transfer or the heat transfer enhancement using high-amplitude oscillatory motion. The presented research follows a similar direction. A new concept is proposed of intensification of the heat transfer in the cooling channels with the use of an acoustic wave generator. The acoustic wave is generated by an appropriately shaped fixed cavity or group of cavities. The phenomenon is related to the coupling mechanism between the vortex shedding generated at the leading edge and the acoustic waves generated within the cavity area. Strong instabilities can be observed within a certain range of the free flow velocities. The presented study includes determination of the relationship between the amplitude of acoustic oscillations and the cooling conditions within the cavity. Different geometries of the acoustic generator are investigated. Calculations are also performed for variable flow conditions. The research presented in this paper is based on a numerical model prepared using the Ansys CFX-17.0 commercial CFD code

    Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit

    No full text
    The paper presents a thermal-economic analysis of different variants of a hard coal-fired 900 MW ultra-supercritical power unit. The aim of the study was to determine the effect of the parameters of live and reheated steam on the basic thermodynamic and economic indices of the thermal cycle. The subject of the study was the cycle configuration proposed as the "initial thermal cycle structure" during the completion of the project "Advanced Technologies for Energy Generation" with the live and reheated steam parameters of 650/670 [degrees]C. At the same time, a new concept of a thermal cycle for ultra-supercritical parameters with live and reheated steam temperature of 700/720 [degrees]C was suggested. The analysis of the ultra-supercritical unit concerned a variant with a single and double steam reheat. All solutions presented in the paper were subject to a detailed thermodynamic analysis, as well as an economic one which also included CO2 emissions charges. The conducted economic analysis made it possible to determine the maximum value of investment expenditures at which given solutions are pro.table

    The effect of the internal reheat application on the efficiency of the 900 MW ultra-supercritical coal-fired power unit

    No full text
    The paper presents a thermal-economic analysis of a 900 MW coal-fired power unit for ultra-supercritical parameters with internal steam reheat. The subject of the study was the cycle proposed as the "initial thermal cycle structure" during the completion of the project "Advanced Technologies for Energy Generation" with the steam parameters of 650/670 [degrees]C/30 MPa. Two configurations of internal reheat were analysed: with a fourand seven-section exchanger. The effect of reheat on the operation of the power unit under a partial load was also analysed, and preliminary calculations of the heat exchange area of the internal reheat were made
    corecore