1,153 research outputs found

    Promoter effect on the reduction behavior of wuestite-based catalysts for ammonia synthesis

    Get PDF
    Ammonia synthesis remains one of the most important catalytic processes since it enables efficient hydrogen storage and provides the basis for the production of fertilizers. Herein, complementary bulk and local analytical techniques were combined to investigate the effect of selected promoters (Al, K, Ca) on the reduction of wuestite into α-iron and their catalytic performance for ammonia synthesis. The use of promoters appears to have a positive effect on the wuestite-derived catalyst in ammonia synthesis. The promoters seemingly act as a binder for wuestite grains and impede the reduction and disproportionation events of wuestite precursors resulting in an increased catalytic performance. This effect is associated with an increase of surface area and mesoporosity. The study delivers new insights into the interplay of structure and promoters in wuestite-based catalysts

    Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy x-ray diffraction

    Full text link
    Structure factors for Cax/2AlxSi1-xO2 glasses (x=0,0.25,0.5,0.67) extended to a wave vector of magnitude Q= 40 1/A have been obtained by high-energy x-ray diffraction. For the first time, it is possible to resolve the contributions of Si-O, Al-O and Ca-O coordination polyhedra to the experimental atomic pair distribution functions (PDF). It has been found that both Si and Al are four-fold coordinated and so participate in a continuous tetrahedral network at low values of x. The number of network breaking defects in the form of non-bridging oxygens (NBO's) increases slowly with x until x=0.5 (NBO's ~ 10% at x=0.5). By x=0.67 the network breaking defects become significant as evidenced by the significant drop in the average coordination number of Si. By contrast, Al-O tetrahedra remain free of NBO's and fully integrated in the Al/Si-O network for all values of x. Calcium maintains a rather uniform coordination sphere of approximately 5 oxygen atoms for all values of x. The results suggest that not only Si/Al-O tetrahedra but Ca-O polyhedra, too, play a role in determining the glassy structure

    Cancer patients’ experiences of using an Interactive Health Communication Application (IHCA)

    Get PDF
    Interactive Health Communication Applications (IHCAs) are increasingly used in health care. Studies document that IHCAs provide patients with knowledge and social support, enhance self- efficacy and can improve behavioural and clinical outcomes. However, research exploring patients’ experiences of using IHCAs has been scarce. The aim of this study was to explore cancer patients’ perspectives and experiences related to the use of an IHCA called WebChoice in their homes. Qualitative interviews were conducted with infrequent, medium and frequent IHCA users—six women and four men with breast and prostate cancer. The interviews were transcribed and analyzed inspired by interactionistic perspectives. We found that some patients’ perceived WebChoice as a “friend,” others as a “stranger.” Access to WebChoice stimulated particularly high frequency users to position themselves as “information seeking agents,” assuming an active patient role. However, to position oneself as an “active patient” was ambiguous and emotional. Feelings of “calmness”, “normalization of symptoms”, feelings of “being part of a community”, feeling “upset” and “vulnerable”, as well as “feeling supported” were identified. Interaction with WebChoice implied for some users an increased focus on illness. Our findings indicate that the interaction between patients and an IHCA such as WebChoice occurs in a variety of ways, some of which are ambivalent or conflicting. Particularly for frequent and medium frequency users, it offers support, but may at the same time reinforce an element of uncertainty in their life. Such insights should be taken into consideration in the future development of IHCAs in healthcare in general and in particular for implementation into patients’ private sphere

    Stellar Iron Abundances at the Galactic Center

    Get PDF
    We present measurements of [Fe/H] for six M supergiant stars and three giant stars within 0.5 pc of the Galactic Center (GC) and one M supergiant star within 30 pc of the GC. The results are based on high-resolution (lambda / Delta lambda =40,000) K-band spectra, taken with CSHELL at the NASA Infrared Telescope Facility.We determine the iron abundance by detailed abundance analysis,performed with the spectral synthesis program MOOG.The mean [Fe/H] of the GC stars is determined to be near solar,[Fe/H] = +0.12 ±\pm 0.22. Our analysis is a differential analysis, as we have observed and applied the same analysis technique to eleven cool, luminous stars in the solar neighborhood with similar temperatures and luminosities as the GC stars. The mean [Fe/H] of the solar neighborhood comparison stars, [Fe/H] = +0.03 ±\pm 0.16, is similar to that of the GC stars. The width of the GC [Fe/H] distribution is found to be narrower than the width of the [Fe/H] distribution of Baade's Window in the bulge but consistent with the width of the [Fe/H] distribution of giant and supergiant stars in the solar neighborhood.Comment: 41 pages, 9 figures, ApJ, in pres

    Online Bayesian Optimization for a Recoil Mass Separator

    Full text link
    The SEparator for CApture Reactions (SECAR) is a next-generation recoil separator system at the Facility for Rare Isotope Beams (FRIB) designed for the direct measurement of capture reactions on unstable nuclei in inverse kinematics. To maximize the performance of this system, stringent requirements on the beam alignment to the central beam axis and on the ion-optical settings need to be achieved. These can be difficult to attain through manual tuning by human operators without potentially leaving the system in a sub-optimal and irreproducible state. In this work, we present the first development of online Bayesian optimization with a Gaussian process model to tune an ion beam through a nuclear astrophysics recoil separator. We show that this method achieves small incoming angular deviations (\textless 1 mrad) in an efficient and reproducible manner that is at least three times faster than standard hand-tuning. Additionally, we present a Bayesian method for experimental optimization of the ion optics, and show that it validates the nominal theoretical ion-optical settings of the device, and improves the mass separation by 32\% for some beams

    Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction

    Full text link
    Nearest and higher neighbor distances as well as bond length distributions (static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have been obtained from high real-space resolution atomic pair distribution functions (PDFs). Using this structural information, we modeled the local atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged probability distributions. This clearly shows that As atom displacements are highly directional and can be represented as a combination of and displacements. Examination of the Kirkwood model indicates that the standard deviation (sigma) of the static disorder on the (In,Ga) sublattice is around 60% of the value on the As sublattice and the (In,Ga) atomic displacements are much more isotropic than those on the As sublattice. The single crystal diffuse scattering calculated from the Kirkwood model shows that atomic displacements are most strongly correlated along directions.Comment: 10 pages, 12 figure

    Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction

    Full text link
    High real-space-resolution atomic pair distribution functions of La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using high-energy x-ray powder diffraction to study the size and shape of the MnO_6 octahedron as a function of temperature and doping. In the paramagnetic insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95 and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and T=20K, we find a single Mn-O bond-length; however, as the metal-insulator transition is approached either by increasing T or decreasing x, intensity progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong evidence that charge localized and delocalized phases coexist close to the metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
    corecore