92 research outputs found

    Identifying malaria transmission foci for elimination using human mobility data

    No full text
    Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model

    Activity-specific mobility of adults in a rural region of western Kenya

    Get PDF
    Improving rural household access to resources such as markets, schools and healthcare can help alleviate poverty in low-income settings. Current models of geographic accessibility to various resources rarely take individual variation into account due to a lack of appropriate data, yet understanding mobility at an individual level is key to knowing how people access their local resources. Our study used both an activity-specific survey and GPS trackers to evaluate how adults in a rural area of western Kenya accessed local resources. We calculated the travel time and time spent at six different types of resource and compared the GPS and survey data to see how well they matched. We found links between several demographic characteristics and the time spent at different resources, and that the GPS data reflected the survey data well for time spent at some types of resource, but poorly for others. We conclude that demography and activity are important drivers of mobility, and a better understanding of individual variation in mobility could be obtained through the use of GPS trackers on a wider scale

    Census-derived migration data as a tool for informing malaria elimination policy

    No full text
    Background: Numerous countries around the world are approaching malaria elimination. Until global eradication is achieved, countries that successfully eliminate the disease will contend with parasite reintroduction through international movement of infected people. Human-mediated parasite mobility is also important within countries near elimination, as it drives parasite flows that affect disease transmission on a subnational scale.Methods: Movement patterns exhibited in census-based migration data are compared with patterns exhibited in a mobile phone data set from Haiti to quantify how well migration data predict short-term movement patterns. Because short-term movement data were unavailable for Mesoamerica, a logistic regression model fit to migration data from three countries in Mesoamerica is used to predict flows of infected people between subnational administrative units throughout the region.Results: Population flows predicted using census-based migration data correlated strongly with mobile phone-derived movements when used as a measure of relative connectivity. Relative population flows are therefore predicted using census data across Mesoamerica, informing the areas that are likely exporters and importers of infected people. Relative population flows are used to identify community structure, useful for coordinating interventions and elimination efforts to minimize importation risk. Finally, the ability of census microdata inform future intervention planning is discussed in a country-specific setting using Costa Rica as an example.Conclusions: These results show long-term migration data can effectively predict the relative flows of infected people to direct malaria elimination policy, a particularly relevant result because migration data are generally easier to obtain than short-term movement data such as mobile phone records. Further, predicted relative flows highlight policy-relevant population dynamics, such as major exporters across the region, and Nicaragua and Costa Rica’s strong connection by movement of infected people, suggesting close coordination of their elimination efforts. Country-specific applications are discussed as well, such as predicting areas at relatively high risk of importation, which could inform surveillance and treatment strategies.<br/

    Recasting the theory of mosquito-borne pathogen transmission dynamics and control

    Get PDF
    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald\u27s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control

    Synthetic data based on IPUMS microcensus data for mobility between NUTS3 areas of Europe

    No full text
    This dataset predicts mobility across all NUTS3 regions of Europe using microcensus data from IPUMS international (https://international.ipums.org/international/). Please see doc in zip file for further information. </span

    Using Google Location History data to quantify fine-scale human mobility

    No full text
    Abstract Background Human mobility is fundamental to understanding global issues in the health and social sciences such as disease spread and displacements from disasters and conflicts. Detailed mobility data across spatial and temporal scales are difficult to collect, however, with movements varying from short, repeated movements to work or school, to rare migratory movements across national borders. While typical sources of mobility data such as travel history surveys and GPS tracker data can inform different typologies of movement, almost no source of readily obtainable data can address all types of movement at once. Methods Here, we collect Google Location History (GLH) data and examine it as a novel source of information that could link fine scale mobility with rare, long distance and international trips, as it uniquely spans large temporal scales with high spatial granularity. These data are passively collected by Android smartphones, which reach increasingly broad audiences, becoming the most common operating system for accessing the Internet worldwide in 2017. We validate GLH data against GPS tracker data collected from Android users in the United Kingdom to assess the feasibility of using GLH data to inform human movement. Results We find that GLH data span very long temporal periods (over a year on average in our sample), are spatially equivalent to GPS tracker data within 100 m, and capture more international movement than survey data. We also find GLH data avoid compliance concerns seen with GPS trackers and bias in self-reported travel, as GLH is passively collected. We discuss some settings where GLH data could provide novel insights, including infrastructure planning, infectious disease control, and response to catastrophic events, and discuss advantages and disadvantages of using GLH data to inform human mobility patterns. Conclusions GLH data are a greatly underutilized and novel dataset for understanding human movement. While biases exist in populations with GLH data, Android phones are becoming the first and only device purchased to access the Internet and various web services in many middle and lower income settings, making these data increasingly appropriate for a wide range of scientific questions

    Using Google location history data to quantify fine-scale human mobility

    No full text
    Background: Human mobility is fundamental to understanding global issues in the health and social sciences such as disease spread and displacements from disasters and conflicts. Detailed mobility data across spatial and temporal scales are difficult to collect, however, with movements varying from short, repeated movements to work or school, to rare migratory movements across national borders. While typical sources of mobility data such as travel history surveys and GPS tracker data can inform different typologies of movement, almost no source of readily obtainable data can address all types of movement at once. Methods: Here, we collect Google Location History (GLH) data and examine it as a novel source of information that could link fine scale mobility with rare, long distance and international trips, as it uniquely spans large temporal scales with high spatial granularity. These data are passively collected by Android smartphones, which reach increasingly broad audiences, becoming the most common operating system for accessing the Internet worldwide in 2017. We validate GLH data against GPS tracker data collected from Android users in the United Kingdom to assess the feasibility of using GLH data to inform human movement. Results: We find that GLH data span very long temporal periods (over a year on average in our sample), are spatially equivalent to GPS tracker data within 100m, and capture more international movement than survey data. We also find GLH data avoid compliance concerns seen with GPS trackers and bias in self-reported travel, as GLH is passively collected. We discuss some settings where GLH data could provide novel insights, including infrastructure planning, infectious disease control, and response to catastrophic events, and discuss advantages and disadvantages of using GLH data to inform human mobility patterns. Conclusions: GLH data are a greatly underutilized and novel dataset for understanding human movement. While biases exist in populations with GLH data, Android phones are becoming the first and only device purchased to access the Internet and various web services in many middle and lower income settings, making these data increasingly appropriate for a wide range of scientific questions.</p
    • …
    corecore