1,760 research outputs found

    Anode Fabrication for Solid Oxide Fuel Cells: Electroless and Electrodeposition of Nickel and Silver into Doped Ceria Scaffolds

    Get PDF
    © 2016 The Authors.A novel fabrication method using electroless and electrodeposited Ni/Ag/GDC for SOFC anodes is presented. First a porous Ce0.9Gd0.1O2-x (GDC) scaffold was deposited on a YSZ electrolyte by screen printing and sintering. The scaffold was then metallized with silver using Tollens reaction, followed by electrodeposition of nickel from a Watts bath. The electrodes (Ni/Ag/GDC) were tested in both symmetrical and fuel cell configurations. The microstructures of the Ni/Ag/GDC anodes were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Nano-particles of Ni formed in the porous GDC scaffold provided triple phase boundaries (TPB). The electronic conductivity of the Ni/Ag/GDC (3.5/24.7/71.8 vol%) electrode was good even at relatively low Ni volume fractions. The electrochemical performance was examined in different concentrations of humidified hydrogen (3% H2O) and over a range of temperatures (600-750 °C). The total area specific resistance (ASR) of the anode at 750 °C in humidified 97 vol% H2 was 1.12 Ω cm2, with low-frequency polarization (R-l) as the largest contributor. The electrodes were successfully integrated into a fuel cell and operated in both H2 and syngas

    Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy

    Get PDF
    This study presents a physically-based model for the simulation of impedance spectra in solid oxide fuel cell (SOFC) composite anodes. The model takes into account the charge transport and the charge-transfer reaction at the three-phase boundary distributed along the anode thickness, as well as the phenomena at the electrode/electrolyte interface and the multicomponent gas diffusion in the test rig. The model is calibrated with experimental impedance spectra of cermet anodes made of nickel and scandia-stabilized zirconia and satisfactorily validated in electrodes with different microstructural properties, quantified through focused ion beam SEM tomography. Besides providing the material-specific kinetic parameters of the electrochemical hydrogen oxidation, this study shows that the correlation between electrode microstructure and electrochemical performance can be successfully addressed by combining physically-based modelling, impedance spectroscopy and 3D tomography. This approach overcomes the limits of phenomenological equivalent circuits and is suitable for the interpretation of experimental data and for the optimisation of the electrode microstructure

    Metallizing porous scaffolds as an alternative fabrication method for solid oxide fuel cell anodes

    Get PDF
    AbstractA combination of electroless and electrolytic techniques is used to incorporate nickel into a porous Ce0.9Gd0.1O1.90 scaffold. First a porous backbone was screen printed into a YSZ electrolyte using an ink that contains sacrificial pore formers. Once sintered, the scaffold was coated with silver using Tollens' reaction followed by electrodeposition of nickel in a Watts bath. At high temperatures the silver forms droplets enabling direct contact between the gadolinia-doped ceria and nickel. Using impedance spectroscopy analysis in a symmetrical cell a total area specific resistance of 1 Ωcm2 at 700 °C in 97% H2 with 3% H2O was found, indicating the potential of this fabrication method for scaling up

    New method for the deposition of nickel oxide in porous scaffolds for electrodes in solid oxide fuel cells and electrolyzers

    Get PDF
    A simple chemical bath deposition is used to coat a complex porous ceramic scaffold with a conformal nickel layer. The resulting composite is used as a Solid Oxide Fuel Cell electrode and its electrochemical response is measured in humidified hydrogen. X-Ray tomography is used to determine microstructural parameters of the uncoated and Ni-coated porous structure, among other, the surface area to total volume, the radial pore size and size of the necks between pores

    Enhanced mechanical stability of Ni-YSZ scaffold demonstrated by nanoindentation and electrochemical impedance spectroscopy

    Get PDF
    The electrochemical performance of Ni-YSZ SOFC anodes can quickly degrade during redox cycling. Mechanical damage at interfaces significantly decreases the number of active triple phase boundaries. This study firstly focuses on the sintering temperature impact on YSZ scaffold mechanical properties. The YSZ scaffold sintered at 1200 °C exhibited 56% porosity, 28.3 GPa elastic modulus and 0.97 GPa hardness and was selected for further redox cycling study. The Ni infiltrated YSZ scaffold operated at 550 °C had an initial stabilized polarisation resistance equal to 0.62 Ω cm2 and only degraded to 2.85 Ω cm2 after 15 redox cycles. The active triple phase boundary density was evaluated by FIB-SEM tomography, and degraded from 28.54 μm−2 to 19.36 μm−2. The YSZ scaffold structure was robust after 15 redox cycles, as there was no observation of the framework fracturing in both SEM and FIB-SEM images, which indicated that the mechanical stability of YSZ scaffold improves the anode stability during redox cycling. Nonetheless, Ni agglomeration could not be prevented within Ni-YSZ scaffolds and this needs further consideration

    Guidelines for the rational design and engineering of 3D manufactured solid oxide fuel cell composite electrodes

    Get PDF
    The growth of 3D printing has opened the scope for designing microstructures for solid oxide fuel cell s (SOFCs) with improved power density and lifeti me. This technique can introduce structural modifications at a scale larger than particle size but smaller than cell size, such as by inserting electrolyte pillars of ~5 - 100 µ m. This study sets the minimum requirements for the rational design of 3D printed electrodes based on an electrochemical model and analytical solutions for functional layers with negligible electronic resistance and no mixed conduction . Results show that this structural modification enhances the power density when the ratio k eff betwee n effective conductivity and bulk conductivity of the ionic phase is smaller than 0.5. The maximum performance improvement is predicted as a function of k eff . A design study on a wide range of pillar shapes indicates that improvements are achieved by any s tructural modification which provides ionic conduction up to a characteristic thickness ~10 - 40 µ m without removing active volume at the electrolyte interface. The best performance is reached for thin ( ~80 µ m) pillars when the composite electrode is optimised for ma ximum three - phase boundary density, pointing towards the design of scaffolds with well - defined geometry and fractal structures

    Optimising the flow through a concertinaed filtration membrane

    Get PDF
    Membrane filtration is a vital industrial process, with applications including air purification and blood filtration. In this paper, we study the optimal design for a concertinaed filtration membrane composed of angled porous membranes and dead-ends. We examine how the filter performance depends on the angle, position, thickness, and permeance of the membrane, through a combination of numerical and asymptotic approaches, the latter in the limit of a slightly angled membrane. We find that, for a membrane of fixed angle and physical properties, there can exist multiple membrane positions that maximise the flux for an applied pressure difference. More generally, we show that while the maximal flux achievable depends on the membrane thickness and permeance, the optimal membrane configuration is always in one of two setups: centred and diagonal across the full domain; or angled and in the corner of the domain.Comment: 24 pages, 10 figure

    Electrochemical simulation of Solid Oxide Fuel Cell electrodes: an integrated approach to address the microstructure-performance correlation

    Get PDF
    Understanding the complex interplay between electrode microstructure and electrochemical performance is one of the key aspects for the optimization of Solid Oxide Fuel Cells (SOFC). Physically-based modelling, at different levels of sophistication, can provide a valuable insight in order to help the interpretation of experimental data and provide design indications to improve electrode stability and performance. In this contribution we summarize the different modelling approaches used in our group, ranging from physically-based equivalent circuits, continuum conservation models and 3D models solved within the reconstructed electrode microstructure. When necessary, these models are coupled with percolation theory, packing algorithms and tomographic techniques. Special focus is given to the application of the models to interpret impedance spectra and their thorough validation under different conditions. Examples include the application of the models to electrodes with different microstructures, the study of the degradation mechanisms of Ni-infiltrated anodes as well as impedance simulations in real microstructures (Figure 1). Results reveal that coupling physically-based modelling, impedance spectroscopy and 3D tomography is a promising approach to gain a fundamental understanding of the phenomena occurring at different length scales in SOFC electrodes, allowing for interpreting and planning experiments as well as to design more stable and more efficient electrodes

    Unveiling the mechanisms of solid-state dewetting in Solid Oxide Cells with novel 2D electrodes

    Get PDF
    During the operation of Solid Oxide Cell (SOC) fuel electrodes, the mobility of nickel can lead to significant changes in electrode morphology, with accompanying degradation in electrochemical performance. In this work, the dewetting of nickel films supported on yttriastabilized zirconia (YSZ), hereafter called 2D cells, is studied by coupling in-situ environmental scanning electron microscopy (E-SEM), image analysis, cellular automata simulation and electrochemical impedance spectroscopy (EIS). Analysis of experimental E-SEM images shows that Ni dewetting causes an increase in active triple phase boundary (aTPB) length up to a maximum, after which a sharp decrease in aTPB occurs due to Ni de-percolation. This microstructural evolution is consistent with the EIS response, which shows a minimum in polarization resistance followed by a rapid electrochemical degradation. These results reveal that neither evaporation-condensation nor surface diffusion of Ni are the main mechanisms of dewetting at 560-800 °C. Rather, the energy barrier for pore nucleation within the dense Ni film appears to be the most important factor. This sheds light on the relevant mechanisms and interfaces that must be controlled to reduce the electrochemical degradation of SOC electrodes induced by Ni dewetting
    • …
    corecore