74 research outputs found

    The history and creation of the Agenda 2030: Designing the sustainable development goals.

    Get PDF
    This article analyzes and studies the history and background of the Sustainable Development Goals (SDGs). Firstly, a historical journey has been made to understand the evolution and development of education up to the arrival of the 2030 Agenda for Sustainable Development action plan. In this way, a timeline was presented that reflects the path taken by the United Nations and the international community to arrive at To reach this new international framework. In this line, the post-2015 agenda, conferences, summits and international decades have been examined, as they were decisive events for the adoption of the SDGs. A official UN documents and programmes were analysed, demonstrating the enormous volume of documentation that has been published on the subject. There is no better way to understand the international interest generated by the proposed topic than to read the "Preamble1" of Resolution A/RES/70/1, 25September 2015, Transforming our world: the United Nations 2030 Agenda for Sustainable Development. In this document you can find the new proposal for a better and higher quality future for all people on the planet.pre-print281 K

    Climate and environmental monitoring for decision making

    Get PDF
    As human populations grow, so do the resource demands imposed on ecosystems and the impacts of our global footprint. Natural resources are not invulnerable, nor infinitely available. The environmental impacts of anthropogenic actions are becoming more apparent – air and water quality are increasingly compromised, pests and diseases are extending beyond their historical boundaries, and deforestation is exacerbating flooding downstream and loss of biodiversity. Society is increasingly becoming aware that ecosystem services are not only limited, but also that they are threatened by human activities. The need to better consider long-term ecosystem health and its role in enabling human habitation and economic activity is urgent. In this context IRI conducts research to understand the impact of climate and environmental changes on different sectors including agriculture, water management, human health, and natural disasters. Through exhaustive, rigorous evaluation, analysis and interpretation of remotely-sensed products and in-situ measurements, IRI ensures its partners have access to the most reliable and relevant information about the climate and environment in a format that best informs their decision making and planning. We focus on monitoring satellite-derived and in-situ estimates of precipitation, temperature, vegetation, water bodies, evapotranspiration, and land cover. Ultimately, the new products developed at IRI in partnership with other institutions at national (e.g. NOAA, NASA, USGS) and international (e.g. National Meteorology Agencies, UN FAO) levels are integrated into operational early-warning systems for health, natural disasters, agriculture, and food security. The new products which monitor in almost real-time climate and environmental conditions are made available through two online data bases at IRI called IRI Data Library and Map Room. In this paper we present the products developed at IRI and how they are integrated into Early Warning Systems (EWS). We also discuss IRI’s experience in linking EWS into decisions and policies using the fire early warning system as a concrete example

    Testing a multi-malaria-model ensemble against 30 years of data in the Kenyan highlands

    Get PDF
    Background: Multi-model ensembles could overcome challenges resulting from uncertainties in models’ initial conditions, parameterization and structural imperfections. They could also quantify in a probabilistic way uncertainties in future climatic conditions and their impacts. Methods: A four-malaria-model ensemble was implemented to assess the impact of long-term changes in climatic conditions on Plasmodium falciparum malaria morbidity observed in Kericho, in the highlands of Western Kenya, over the period 1979–2009. Input data included quality controlled temperature and rainfall records gathered at a nearby weather station over the historical periods 1979–2009 and 1980–2009, respectively. Simulations included models’ sensitivities to changes in sets of parameters and analysis of non-linear changes in the mean duration of host’s infectivity to vectors due to increased resistance to anti-malarial drugs. Results: The ensemble explained from 32 to 38% of the variance of the observed P. falciparum malaria incidence. Obtained R2-values were above the results achieved with individual model simulation outputs. Up to 18.6% of the variance of malaria incidence could be attributed to the +0.19 to +0.25°C per decade significant long-term linear trend in near-surface air temperatures. On top of this 18.6%, at least 6% of the variance of malaria incidence could be related to the increased resistance to anti-malarial drugs. Ensemble simulations also suggest that climatic conditions have likely been less favourable to malaria transmission in Kericho in recent years. Conclusions: Long-term changes in climatic conditions and non-linear changes in the mean duration of host’s infectivity are synergistically driving the increasing incidence of P. falciparum malaria in the Kenyan highlands. User-friendly, online-downloadable, open source mathematical tools, such as the one presented here, could improve decision-making processes of local and regional health authorities
    corecore