2,182 research outputs found

    Genome-wide association studies for methane production in dairy cattle

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Genomic selection has been proposed for the mitigation of methane (CH4) emissions by cattle because there is considerable variability in CH4 emissions between individuals fed on the same diet. The genome-wide association study (GWAS) represents an important tool for the detection of candidate genes, haplotypes or single nucleotide polymorphisms (SNP) markers related to characteristics of economic interest. The present study included information for 280 cows in three dairy production systems in Mexico: 1) Dual Purpose (n = 100), 2) Specialized Tropical Dairy (n = 76), 3) Familiar Production System (n = 104). Concentrations of CH4 in a breath of individual cows at the time of milking (MEIm) were estimated through a system of infrared sensors. After quality control analyses, 21,958 SNPs were included. Associations of markers were made using a linear regression model, corrected with principal component analyses. In total, 46 SNPs were identified as significant for CH4 production. Several SNPs associated with CH4 production were found at regions previously described for quantitative trait loci of composition characteristics of meat, milk fatty acids and characteristics related to feed intake. It was concluded that the SNPs identified could be used in genomic selection programs in developing countries and combined with other datasets for global selection

    Immediate origin of the Moon as a post-impact satellite

    Get PDF
    The Moon is traditionally thought to have coalesced from the debris ejected by a giant impact onto the early Earth. However, such models struggle to explain the similar isotopic compositions of Earth and lunar rocks at the same time as the system’s angular momentum, and the details of potential impact scenarios are hotly debated. Above a high resolution threshold for simulations, we find that giant impacts can immediately place a satellite with similar mass and iron content to the Moon into orbit far outside Earth’s Roche limit. Even satellites that initially pass within the Roche limit can reliably and predictably survive, by being partially stripped and then torqued onto wider, stable orbits. Furthermore, the outer layers of these directly formed satellites are molten over cooler interiors and are composed of around 60% proto-Earth material. This could alleviate the tension between the Moon’s Earth-like isotopic composition and the different signature expected for the impactor. Immediate formation opens up new options for the Moon’s early orbit and evolution, including the possibility of a highly tilted orbit to explain the lunar inclination, and offers a simpler, single-stage scenario for the origin of the Moon

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    Corrigendum to: Venomics of the poorly studied hognosed pitvipers Porthidium arcosae and Porthidium volcanicum

    Get PDF
    2 páginas y 1 figura. Corrigendum del registro: http://hdl.handle.net/10261/256298We report the first proteomics analyses of the venoms of two poorly studied snakes, the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to South Pacific Costa Rica and western Panamá. These venom proteomes share a conserved compositional pattern reported in four other congeneric species within the clade of South American Porthidium species, P. nasutum, P. lansbergii, P. ophryomegas, and P. porrasi. The paraspecific immunorecognition profile of antivenoms produced in Costa Rica (ICP polyvalent), Perú (Instituto Nacional de Salud) and Brazil (soro antibotrópico pentavalente, SAB, from Instituto Butantan) against the venom of P. arcosae was investigated through a third-generation antivenomics approach. The maximal venom-binding capacities of the investigated antivenoms were 97.1 mg, 21.8 mg, and 25.7 mg of P. arcosae venom proteins per gram of SAB, ICP, and INS-PERU antibody molecules, respectively, which translate into 28.4 mg, 13.1 mg, and 15.2 mg of total venom proteins bound per vial of SAB, ICP, and INS-PERU AV. The antivenomics results suggest that 21.8%, 7.8% and 6.1% of the SAB, ICP, and INS-PERU antibody molecules recognized P. arcosae venom toxins. The SAB antivenom neutralized P. arcosae venom's lethality in mice with an ED50 of 31.3 mgV/g SAB AV. This preclinical neutralization paraspecificity points to Brazilian SAB as a promising candidate for the treatment of envenomings by Ecuadorian P. arcosae. BIOLOGICAL SIGNIFICANCE: Assessing the preclinical efficacy profile of antivenoms against homologous and heterologous medically relevant snake venoms represents an important goal towards defining the biogeographic range of their clinical utility. This is particularly relevant in regions, such as Mesoamerica, where a small number of pharmaceutical companies produce antivenoms against the venoms of a small number of species of maximum medical relevance among the local rich herpetofauna, leaving a wide range of snakes of secondary medical relevance, but also causing life-threatening human envenomings without nominal clinical coverage. This work is part of a larger project aiming at mapping the immunological characteristics of antivenoms generated in Latin American countries towards venoms of such poorly studied snakes of the local and neighboring countries' herpetofauna. Here we report the proteomics characterization of the Manabi hognosed pitviper Porthidium arcosae endemic to the western coastal province of Manabí (Ecuador), and the Costa Rican hognosed pitviper P. volcanicum with distribution restricted to southwestern Costa Rica, the antivenomics assessment of three bothropoid commercial antivenoms produced in Costa Rica, Perú, and Brazil against the venom components of P. arcosae, and the in vivo capacity of the Brazilian soro antibotrópico pentavalente (SAB) from Instituto Butantan to neutralize the murine lethality of P. arcosae venom. The preclinical paraspecific ED50 of 31.3 mg of P. arcosae venom per gram of antivenom points to Brazilian SAB as a promising candidate for the treatment of envenomings by the Manabi hognosed pitviper P. arcosae.This study was partly supported by grant EFP-00021744 financed by Fundaç ̃ao Rondˆonia de Amparo ao Desenvolvimento das Aç ̃oes Cien- tíficas e Tecnol ́ogicas (FAPERO, Rondˆonia, Brazil). Research performed at IBV-CSIC was partially funded by grant BFU2017-89103-P from the Ministerio de Ciencia e Innovaci ́on, Madrid, Spain. Work performed at Instituto Clodomiro Picado was supported by Vicerrectoría de Inves- tigaci ́on (741-C0-071) and Vicerrectoría de Acci ́on Social (Proyecto ED- 3248) of Universidad de Costa Rica. The excellent bench work assistance of Sarai Quesada-Bernat with antivenomics, and Yania Rodríguez Jim ́enez with determination of the murine LD50 for P. arcosae venom and neutralization of its lethal effect by the Brazilian pentavalent bothropic antivenom, are gratefully acknowledgedPeer reviewe

    Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

    Get PDF
    Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code Swift. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. Swiftalso evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with ≈300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with Swift
    corecore