3 research outputs found

    Modélisation à champ complet pour la recristallisation dynamique discontinue dans un contexte CPFEM

    No full text
    Dynamic recrystallization (DRX) is one of the main metallurgical phenomena responsible for the evolution of the microstructure of metallic materials subjected to hot metal forming processes. Understanding and predicting the subsequent physical mechanisms is of prime importance as the resulting microstructure will be directly responsible of the final in-use material properties. Thus, numerous phenomenological models (JMAK type for example) aiming to describe DRX have been developed in the state of the art. However, because of the complexity of the mechanisms involved in DRX and their interactions, phenomenological or mean field models are not able to fully account for the local evolution of the microstructure and full field approaches are required generally when precise calculations are aimed. Most DRX full field models have limitations in their ability to model high deformation (which limits their applicability for real industrial thermomechanical treatments) and in their description of plastic deformation (which is often grossly simplified). In this PhD, a new full field discontinuous DRX (DDRX) model is proposed by coupling a crystal plasticity finite element method (CPFEM) with a level-set finite element (LS-FE) framework to describe the grain boundary network motion. The proposed model considers anisotropic plastic deformation and its impact on grain boundary motion. Combined with a remeshing methodology, the proposed numerical framework is capable of describing DDRX up to very large deformation levels. The model is calibrated and compared against experimental measurements of 304L steel. Moreover, the interest of this strategy (ratio precision/numerical cost) is also discussed comparatively to a simpler approach (CP Taylor approximation). All these developments are realized in a generic CPFEM module easily usable in any FE code.La recristallisation dynamique (DRX) est l'un des principaux phénomènes métallurgiques responsable de l'évolution de la microstructure des matériaux métalliques survenant lors de luer mise en forme à chaud. Comprendre et prévoir ce phénomène physique est d'une importance primordiale car la microstructure résultante est en général directement responsable des propriétés finales du matériau. Ainsi, de nombreux modèles phénoménologiques (de type JMAK par exemple) visant à décrire la DRX ont été développés dans l'état de l'art. Cependant, en raison de la complexité des mécanismes impliqués et de leurs interactions, les modèles phénoménologiques ou de champ moyen ne sont pas en mesure de rendre pleinement compte de l'évolution locale de la microstructure et des approches de type champ complet sont nécessaires. La plupart des modèles DRX en champ complet ont des limites dans leur capacité à modéliser une déformation élevée (ce qui les rend en général inutilisable pour des chemins thermomécaniques industriels) et dans la description de la déformation plastique (souvent très simplifié). Dans cette thèse, un nouveau modèle à champ complet pour la recristallisation dynamique discontinue (DDRX) est proposé en couplant une méthode éléments finis de plasticité cristalline (CPFEM) avec un cadre élément finis - level set (LS-FE) pour décrire le mouvement des joints de grains. Le modèle proposé prend en compte la déformation plastique anisotrope et son impact sur le mouvement des joints de grains. Combiné à une méthodologie de remaillage, le cadre numérique proposé est capable de décrire la DDRX jusqu'à des niveaux de déformation très importants. Le modèle est calibré et comparé aux mesures expérimentales de l'acier 304L. De plus, l'intérêt de cette stratégie (ratio précision / coût numérique) est également discuté comparativement à une approche simplifie (approximation CP Taylor). Tous ces développements sont réalisés dans un module CPFEM générique facilement utilisable dans n'importe quel code EF

    Handling tensors using tensorial Kelvin bases: application to olivine polycrystal deformation modeling using elastically anistropic CPFEM

    No full text
    International audienceIn this work we present a simple and convenient method for handling tensors within computational mechanics frameworks based on the Kelvin decomposition. This methodology was set up within a crystal plasticity framework which permits, using the Kelvin base related to the crystal symmetries, to account for elastic anisotropy. The classical mixed velocity pressure finite element formulation has been modified in order to account for the elastic anisotropic behavior introduced into the crystal plasticity model. Moreover this modification of the mixed formulations allows to account for volume/pressure variations that can stream from constitutive models that could allow present compressible plasticity. Using this numerical framework, we explore the influence of elastic anisotropy onto the mechanical behavior of olivine. Our results suggest that at the polycrystal scale, the elastic anisotropy is not of first order importance. However the local changes on the stress state can be important for some physical phenomena such as recrystallization and damage

    Full field modeling of dynamic recrystallization in a CPFEM context – Application to 304L steel

    No full text
    International audienceIn this work the recently proposed full field approach to model dynamic recrystallization [1] is applied to model 304L steel. The framework couples a CPFEM (crystal plasticity finite element method) model with a LS-FE (level-set finite element method) for grain boundary migration and phenomenological laws. 304L steel samples are subjected to thermomechanical tests and their flow behaviour is characterized, additionally Electron Back Scattered Diffraction (EBSD) is used to study microstructure evolutions. Part of the experimental data is used to calibrate the model parameters and describe their evolution as a function of the thermomechanical conditions. The calibrated model is used to predict the microstructural evolution of 304L steel, the results are compared with the remaining experimental measurements. The comparison shows that the model correctly predicts the flow behaviour and recrystallization fraction evolution. However the results also show that the use of classical phenomenological models limit the model capability to predict grain size evolution. Different approaches to improve the model grain size prediction are presented and compared, the results show significant improvements when compared with experimental data
    corecore