36,960 research outputs found

    Couplings in coupled channels versus wave functions: application to the X(3872) resonance

    Get PDF
    We perform an analytical study of the scattering matrix and bound states in problems with many physical coupled channels. We establish the relationship of the couplings of the states to the different channels, obtained from the residues of the scattering matrix at the poles, with the wave functions for the different channels. The couplings basically reflect the value of the wave functions around the origin in coordinate space. In the concrete case of the X(3872) resonance, understood as a bound state of \ddn and \ddc (and c.c.c.c.), with the \ddn loosely bound, we find that the couplings to the two channels are essentially equal leading to a state of good isospin I=0 character. This is in spite of having a probability for finding the \ddn state much larger than for \ddc since the loosely bound channel extends further in space. The analytical results, obtained with exact solutions of the Schr\"odinger equation for the wave functions, can be useful in general to interpret results found numerically in the study of problems with unitary coupled channels methods.Comment: 14 pages, 4 figure

    Isospin breaking effects in the dynamical generation of the X(3872)

    Full text link
    We have studied isospin breaking effects in the X(3872) resonance and found a natural explanation for the branching fraction of the X decaying to J/ψJ/\psi with two and three pions being close to unit. Within our framework the X(3872) is a dynamically generated resonance in coupled channels. We also study the relationship between the couplings of the resonance to the coupled channels with its wave function, which further helps us to understand the isospin structure of the resonance.Comment: 5 pages, 1 figure. To appear in the Proceedings of XIII International Conference on Hadron Spectroscopy, November 29 - December 4, 2009, Florida State Universit

    Properties of Gamma-Ray Burst Time Profiles Using Pulse Decomposition Analysis

    Get PDF
    The time profiles of many gamma-ray bursts consist of distinct pulses, which offers the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse shape parameters. This pulse decomposition analysis has previously been performed on a small sample of bright long bursts using binned data from BATSE, which comes in several data types, and on a sample of short bursts using the BATSE Time-Tagged Event (TTE) data type. We have developed an interactive pulse-fitting program using the phenomenological pulse model of Norris, et al. and a maximum-likelihood fitting routine. We have used this program to analyze the Time-to-Spill (TTS) data for all bursts observed by BATSE up through trigger number 2000, in all energy channels for which TTS data is available. We present statistical information on the attributes of pulses comprising these bursts, including relations between pulse characteristics in different energy channels and the evolution of pulse characteristics through the course of a burst. We carry out simulations to determine the biases that our procedures may introduce. We find that pulses tend to have shorter rise times than decay times, and tend to be narrower and peak earlier at higher energies. We also find that pulse brightness, pulse width, and pulse hardness ratios do not evolve monotonically within bursts, but that the ratios of pulse rise times to decay times tend to decrease with time within bursts.Comment: 40 pages, 19 figures. Submitted to Astrophysical Journal. PostScript and PDF with un-bitmapped figures available at http://www.slac.stanford.edu/pubs/slacpubs/8000/slac-pub-8364.html . Accompanying paper astro-ph/0002218 available at http://www.slac.stanford.edu/pubs/slacpubs/8000/slac-pub-8365.htm
    corecore