13,888 research outputs found

    Interlayer hybridization and moir\'e superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides

    Full text link
    Geometrical moir\'e patterns, generic for almost aligned bilayers of two-dimensional (2D) crystals with similar lattice structure but slightly different lattice constants, lead to zone folding and miniband formation for electronic states. Here, we show that moir\'e superlattice (mSL) effects in MoSe2/WS2\mathrm{MoSe}_2/\mathrm{WS}_2 and MoTe2/MoSe2\mathrm{MoTe}_2/\mathrm{MoSe}_2 heterobilayers that feature alignment of the band edges are enhanced by resonant interlayer hybridization, and anticipate similar features in twisted homobilayers of TMDs, including examples of narrow minibands close to the actual band edges. Such hybridization determines the optical activity of interlayer excitons in transition-metal dichalcogenide (TMD) heterostructures, as well as energy shifts in the exciton spectrum. We show that the resonantly hybridized exciton (hX) energy should display a sharp modulation as a function of the interlayer twist angle, accompanied by additional spectral features caused by umklapp electron-photon interactions with the mSL. We analyze the appearance of resonantly enhanced mSL features in absorption and emission of light by the interlayer exciton hybridization with both intralayer A and B excitons in MoSe2/WS2\mathrm{MoSe}_2/\mathrm{WS}_2, MoTe2/MoSe2\mathrm{MoTe}_2/\mathrm{MoSe}_2, MoSe2/MoS2\mathrm{MoSe}_2/\mathrm{MoS}_2, WS2/MoS2\mathrm{WS}_2/\mathrm{MoS}_2, and WSe2/MoSe2\mathrm{WSe}_2/\mathrm{MoSe}_2.Comment: Final published version, with updated title and abstract, minor corrections to equations, and 4 new figures adde

    Capacitive interactions and Kondo effect tuning in double quantum impurity systems

    Get PDF
    We present a study of the correlated transport regimes of a double quantum impurity system with mutual capacitive interactions. Such system can be implemented by a double quantum dot arrangement or by a quantum dot and nearby quantum point contact, with independently connected sets of metallic terminals. Many--body spin correlations arising within each dot--lead subsystem give rise to the Kondo effect under appropriate conditions. The otherwise independent Kondo ground states may be modified by the capacitive coupling, decisively modifying the ground state of the double quantum impurity system. We analyze this coupled system through variational methods and the numerical renormalization group technique. Our results reveal a strong dependence of the coupled system ground state on the electron--hole asymmetries of the individual subsystems, as well as on their hybridization strengths to the respective reservoirs. The electrostatic repulsion produced by the capacitive coupling produces an effective shift of the individual energy levels toward higher energies, with a stronger effect on the `shallower' subsystem (that closer to resonance with the Fermi level), potentially pushing it out of the Kondo regime and dramatically changing the transport properties of the system. The effective remote gating that this entails is found to depend nonlinearly on the capacitive coupling strength, as well as on the independent subsystem levels. The analysis we present here of this mutual interaction should be important to fully characterize transport through such coupled systems.Comment: Submitted to Phys. Rev. B. 11 pages, 10 figure

    Asserting a Comprehensive Approach for Defining Mediation Communication

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.

    Get PDF
    Breast milk enhances the predominance of Bifidobacterium species in the infant gut, probably due to its large concentration of human milk oligosaccharides (HMO). Here we screened infant-gut isolates of Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum using individual HMO, and compared the global transcriptomes of representative isolates on major HMO by RNA-seq. While B. infantis displayed homogeneous HMO-utilization patterns, B. bifidum were more diverse and some strains did not use fucosyllactose (FL) or sialyllactose (SL). Transcriptomes of B. bifidum SC555 and B. infantis ATCC 15697 showed that utilization of pooled HMO is similar to neutral HMO, while transcriptomes for growth on FL were more similar to lactose than HMO in B. bifidum. Genes linked to HMO-utilization were upregulated by neutral HMO and SL, but not by FL in both species. In contrast, FL induced the expression of alternative gene clusters in B. infantis. Results also suggest that B. bifidum SC555 does not utilize fucose or sialic acid from HMO. Surprisingly, expression of orthologous genes differed between both bifidobacteria even when grown on identical substrates. This study highlights two major strategies found in Bifidobacterium species to process HMO, and presents detailed information on the close relationship between HMO and infant-gut bifidobacteria

    Dynamical magnetic anisotropy and quantum phase transitions in a vibrating spin-1 molecular junction

    Full text link
    We study the electronic transport through a spin-1 molecule in which mechanical stretching produces a magnetic anisotropy. In this type of device, a vibron mode along the stretching axis will couple naturally to the molecular spin. We consider a single molecular vibrational mode and find that the electron-vibron interaction induces an effective correction to the magnetic anisotropy that shifts the ground state of the device toward a non-Fermi liquid phase. A transition into a Fermi liquid phase could then be achieved, by means of mechanical stretching, passing through an underscreened spin-1 Kondo regime. We present numerical renormalization group results for the differential conductance, the spectral density, and the magnetic susceptibility across the transition.Comment: 7 pages, 7 figure

    Automated generation of computationally hard feature models using evolutionary algorithms

    Get PDF
    This is the post-print version of the final paper published in Expert Systems with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2014 Elsevier B.V.A feature model is a compact representation of the products of a software product line. The automated extraction of information from feature models is a thriving topic involving numerous analysis operations, techniques and tools. Performance evaluations in this domain mainly rely on the use of random feature models. However, these only provide a rough idea of the behaviour of the tools with average problems and are not sufficient to reveal their real strengths and weaknesses. In this article, we propose to model the problem of finding computationally hard feature models as an optimization problem and we solve it using a novel evolutionary algorithm for optimized feature models (ETHOM). Given a tool and an analysis operation, ETHOM generates input models of a predefined size maximizing aspects such as the execution time or the memory consumption of the tool when performing the operation over the model. This allows users and developers to know the performance of tools in pessimistic cases providing a better idea of their real power and revealing performance bugs. Experiments using ETHOM on a number of analyses and tools have successfully identified models producing much longer executions times and higher memory consumption than those obtained with random models of identical or even larger size.European Commission (FEDER), the Spanish Government and the Andalusian Government
    • …
    corecore