43,298 research outputs found

    Precision heat forming of tetrafluoroethylene tubing

    Get PDF
    An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process

    Inversion mechanism for the transport current in type-II superconductors

    Get PDF
    The longitudinal transport problem (the current is applied parallel to some bias magnetic field) in type-II superconductors is analyzed theoretically. Based on analytical results for simplified configurations, and relying on numerical studies for general scenarios, it is shown that a remarkable inversion of the current flow in a surface layer may be predicted under a wide set of experimental conditions. Strongly inhomogeneous current density profiles, characterized by enhanced transport toward the center and reduced, or even negative, values at the periphery of the conductor, are expected when the physical mechanisms of flux depinning and consumption (via line cutting) are recalled. A number of striking collateral effects, such as local and global paramagnetic behavior, are predicted. Our geometrical description of the macroscopic material laws allows a pictorial interpretation of the physical phenomena underlying the transport backflow.Comment: 8 pages, 6 figures (Best quality pictures are available by author's contact

    Are small neutrino masses unveiling the missing mass problem of the Universe?

    Get PDF
    We present a scenario in which a remarkably simple relation linking dark matter properties and neutrino masses naturally emerges. This framework points towards a low energy theory where the neutrino mass originates from the existence of a light scalar dark matter particle in the MeV mass range. A very surprising aspect of this scenario is that the required MeV dark matter is one of the favoured candidates to explain the mysterious emission of 511 keV photons in the centre of our galaxy. A possible interpretation of these findings is that dark matter is the stepping stone of a theory beyond the standard model instead of being an embarrassing relic whose energy density must be accounted for in any successful model building.Comment: 4pages, 2 figures. Two paragraphs have been added. One for the complex case; the other one for the UV completio

    Nongauge bright soliton of the nonlinear Schrodinger (NLS) equation and a family of generalized NLS equations

    Get PDF
    We present an approach to the bright soliton solution of the NLS equation from the standpoint of introducing a constant potential term in the equation. We discuss a `nongauge' bright soliton for which both the envelope and the phase depend only on the traveling variable. We also construct a family of generalized NLS equations with solitonic sech^p solutions in the traveling variable and find an exact equivalence with other nonlinear equations, such as the Korteveg-de Vries and Benjamin-Bona-Mahony equations when p=2Comment: ~4 pages, 3 figures, 16 references, published versio

    Dynamical magnetic anisotropy and quantum phase transitions in a vibrating spin-1 molecular junction

    Full text link
    We study the electronic transport through a spin-1 molecule in which mechanical stretching produces a magnetic anisotropy. In this type of device, a vibron mode along the stretching axis will couple naturally to the molecular spin. We consider a single molecular vibrational mode and find that the electron-vibron interaction induces an effective correction to the magnetic anisotropy that shifts the ground state of the device toward a non-Fermi liquid phase. A transition into a Fermi liquid phase could then be achieved, by means of mechanical stretching, passing through an underscreened spin-1 Kondo regime. We present numerical renormalization group results for the differential conductance, the spectral density, and the magnetic susceptibility across the transition.Comment: 7 pages, 7 figure

    Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics

    Full text link
    We numerically investigate the role of mechanical stress in modifying the conductivity properties of the cardiac tissue and its impact in computational models for cardiac electromechanics. We follow a theoretical framework recently proposed in [Cherubini, Filippi, Gizzi, Ruiz-Baier, JTB 2017], in the context of general reaction-diffusion-mechanics systems using multiphysics continuum mechanics and finite elasticity. In the present study, the adapted models are compared against preliminary experimental data of pig right ventricle fluorescence optical mapping. These data contribute to the characterization of the observed inhomogeneity and anisotropy properties that result from mechanical deformation. Our novel approach simultaneously incorporates two mechanisms for mechano-electric feedback (MEF): stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify their influence into the nonlinear spatiotemporal dynamics. It is found that i) only specific combinations of the two MEF effects allow proper conduction velocity measurement; ii) expected heterogeneities and anisotropies are obtained via the novel stress-assisted diffusion mechanisms; iii) spiral wave meandering and drifting is highly mediated by the applied mechanical loading. We provide an analysis of the intrinsic structure of the nonlinear coupling using computational tests, conducted using a finite element method. In particular, we compare static and dynamic deformation regimes in the onset of cardiac arrhythmias and address other potential biomedical applications
    corecore