43,298 research outputs found
Precision heat forming of tetrafluoroethylene tubing
An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process
Inversion mechanism for the transport current in type-II superconductors
The longitudinal transport problem (the current is applied parallel to some
bias magnetic field) in type-II superconductors is analyzed theoretically.
Based on analytical results for simplified configurations, and relying on
numerical studies for general scenarios, it is shown that a remarkable
inversion of the current flow in a surface layer may be predicted under a wide
set of experimental conditions. Strongly inhomogeneous current density
profiles, characterized by enhanced transport toward the center and reduced, or
even negative, values at the periphery of the conductor, are expected when the
physical mechanisms of flux depinning and consumption (via line cutting) are
recalled. A number of striking collateral effects, such as local and global
paramagnetic behavior, are predicted. Our geometrical description of the
macroscopic material laws allows a pictorial interpretation of the physical
phenomena underlying the transport backflow.Comment: 8 pages, 6 figures (Best quality pictures are available by author's
contact
Are small neutrino masses unveiling the missing mass problem of the Universe?
We present a scenario in which a remarkably simple relation linking dark
matter properties and neutrino masses naturally emerges. This framework points
towards a low energy theory where the neutrino mass originates from the
existence of a light scalar dark matter particle in the MeV mass range. A very
surprising aspect of this scenario is that the required MeV dark matter is one
of the favoured candidates to explain the mysterious emission of 511 keV
photons in the centre of our galaxy. A possible interpretation of these
findings is that dark matter is the stepping stone of a theory beyond the
standard model instead of being an embarrassing relic whose energy density must
be accounted for in any successful model building.Comment: 4pages, 2 figures. Two paragraphs have been added. One for the
complex case; the other one for the UV completio
Nongauge bright soliton of the nonlinear Schrodinger (NLS) equation and a family of generalized NLS equations
We present an approach to the bright soliton solution of the NLS equation
from the standpoint of introducing a constant potential term in the equation.
We discuss a `nongauge' bright soliton for which both the envelope and the
phase depend only on the traveling variable. We also construct a family of
generalized NLS equations with solitonic sech^p solutions in the traveling
variable and find an exact equivalence with other nonlinear equations, such as
the Korteveg-de Vries and Benjamin-Bona-Mahony equations when p=2Comment: ~4 pages, 3 figures, 16 references, published versio
Dynamical magnetic anisotropy and quantum phase transitions in a vibrating spin-1 molecular junction
We study the electronic transport through a spin-1 molecule in which
mechanical stretching produces a magnetic anisotropy. In this type of device, a
vibron mode along the stretching axis will couple naturally to the molecular
spin. We consider a single molecular vibrational mode and find that the
electron-vibron interaction induces an effective correction to the magnetic
anisotropy that shifts the ground state of the device toward a non-Fermi liquid
phase. A transition into a Fermi liquid phase could then be achieved, by means
of mechanical stretching, passing through an underscreened spin-1 Kondo regime.
We present numerical renormalization group results for the differential
conductance, the spectral density, and the magnetic susceptibility across the
transition.Comment: 7 pages, 7 figure
Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics
We numerically investigate the role of mechanical stress in modifying the
conductivity properties of the cardiac tissue and its impact in computational
models for cardiac electromechanics. We follow a theoretical framework recently
proposed in [Cherubini, Filippi, Gizzi, Ruiz-Baier, JTB 2017], in the context
of general reaction-diffusion-mechanics systems using multiphysics continuum
mechanics and finite elasticity. In the present study, the adapted models are
compared against preliminary experimental data of pig right ventricle
fluorescence optical mapping. These data contribute to the characterization of
the observed inhomogeneity and anisotropy properties that result from
mechanical deformation. Our novel approach simultaneously incorporates two
mechanisms for mechano-electric feedback (MEF): stretch-activated currents
(SAC) and stress-assisted diffusion (SAD); and we also identify their influence
into the nonlinear spatiotemporal dynamics. It is found that i) only specific
combinations of the two MEF effects allow proper conduction velocity
measurement; ii) expected heterogeneities and anisotropies are obtained via the
novel stress-assisted diffusion mechanisms; iii) spiral wave meandering and
drifting is highly mediated by the applied mechanical loading. We provide an
analysis of the intrinsic structure of the nonlinear coupling using
computational tests, conducted using a finite element method. In particular, we
compare static and dynamic deformation regimes in the onset of cardiac
arrhythmias and address other potential biomedical applications
- …