92 research outputs found

    Choroidal thickness and vascular microstructure parameters in Chinese school-age children with high hyperopia using optical coherence tomography

    Get PDF
    BackgroundThe current study was to evaluate the choroidal thickness (CT) and vascular microstructure parameters in Chinese children with high hyperopia through enhanced depth imaging optical coherence tomography (EDI-OCT).MethodsCross-sectional study. A total of 23 children with high hyperopia and 29 children with normal refractive status were retrospectively enrolled in the study. The measurement of the macular CT, 7 points: the sub-foveal area point, the temporal and nasal points at a radius of 0.5-mm, 1.5-mm, and 3-mm were measured. After binarization of the OCT images, the total choroidal area (TCA), stromal area (SA) as well as the luminal area (LA) were identified and measured. The choroidal vascularity index (CVI) was defined as the ratio of LA to TCA. The independent t-test for normal distributions and Kruskal-Wallis tests for non-normal distributions were used to compare other parameters between groups. The Tamhane's T2 test was performed to adjust for multiple comparisons between groups within each analysis.ResultsThe subfoveal CT (SFCT) in the high hypermetropic group was significantly thicker than that in normal controls (309.22 ± 53.14 μm vs. 291.27 ± 38.27 μm; P = 0.019). At 0.5 mm, 1.5 mm, and 3.0 mm in diameter, the nasal choroidal sectors of the high hyperopia eyes were significantly thicker than that of the control (P < 0.05). There was significant difference in the choroidal vascular parameters. TCA and LA in the high hyperopia eyes was significantly larger than that of the normal control eyes (3078129.54 ± 448271.18 μm2 vs. 2765218.17 ± 317827.19 μm2, 1926819.54 ± 229817.56 μm2 vs. 1748817.18 ± 191827.98 μm2; P = 0.009, P = 0.011; Table 2). SA values were 1086287.55 ± 212712.11 um2 in the high hyperopia eyes and 999712.71 ± 209838.12 μm2 in the control eyes. The CVI and LA/SA ratio values were differed significantly in the two groups (P = 0.019, P = 0.030, respectively). AL was significantly correlated with SFCT (r = −0.325, P = 0.047), but not significantly correlated with other parameters. Spherical equivalent (SE) was significantly correlated with AL and SFCT (r = −0.711, r = 0.311; P = 0.001, P = 0.016), whereas no significant association between sphere and other parameters.ConclusionThe choroidal structure of the high hyperopia eyes was different from the normal control eyes. The thicker SFCT, higher LA, and TCA were characteristic of high hyperopia eyes. Choroidal blood flow may be decreased in amblyopic eyes. SFCT of high hyperopia children abnormally increased and correlated with shorter AL and higher SE. AL and SE affect choroidal structure and vascular density

    Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model

    Get PDF
    Vegetable production in China is associated with high inputs of nitrogen, posing a risk of losses to the environment. Organic matter mineralisation is a considerable source of nitrogen (N) which is hard to quantify. In a two-year greenhouse cucumber experiment with different N treatments in North China, non-observed pathways of the N cycle were estimated using the EU-Rotate_N simulation model. EU-Rotate_N was calibrated against crop dry matter and soil moisture data to predict crop N uptake, soil mineral N contents, N mineralisation and N loss. Crop N uptake (Modelling Efficiencies (ME) between 0.80 and 0.92) and soil mineral N contents in different soil layers (ME between 0.24 and 0.74) were satisfactorily simulated by the model for all N treatments except for the traditional N management. The model predicted high N mineralisation rates and N leaching losses, suggesting that previously published estimates of N leaching for these production systems strongly underestimated the mineralisation of N from organic matter

    Imaging small animal whole-body dynamics by single-impulse panoramic photoacoustic computed tomography

    Get PDF
    Small animal whole-body imaging, providing physiological, pathological, and phenotypical insights into biological processes, is indispensable in preclinical research. With high spatiotemporal resolution and functional contrast, small animal imaging can visualize biological dynamics in vivo at whole-body scale, which can advance both fundamental biology and translational medicine. However, current non-optical imaging techniques lack either spatiotemporal resolution or functional contrasts, and pure optical imaging suffers from either shallow penetration (up to ~1 mm) or a poor resolution-to-depth ratio (~1/3). Here, we present a standalone system, termed single-impulse panoramic photoacoustic computed tomography (SIP-PACT), which overcomes all the above limitations. Our technology, with unprecedented performance, is envisioned to complement existing modalities for imaging entire small animals. As an optical imaging modality, SIP-PACT captures the high molecular contrast of endogenous substances such as hemoglobin, melanin, and lipid, as well as exogenous biomarkers, at the whole animal scale with full-view fidelity. Unlike other optical imaging methods, SIP-PACT sees through ~5 cm of tissue in vivo, and acquires cross-sectional images with an in-plane resolution of ~100 μm. Such capabilities allow us to image, for the first time, mouse wholebody dynamics in real time with clear sub-organ anatomical and functional details and without motion artifacts. SIPPACT can capture transients of whole-body oxygen saturation and pulse wave propagation in vivo without labeling. In sum, we expect widespread applications of SIP-PACT as a whole-body imaging tool for small animals in fundamental biology, pharmacology, pathology, oncology, and other areas

    Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo

    Get PDF
    Photoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast. We have imaged both DrBphP-PCM and RpBphP1 simultaneously on the basis of their unique signal decay characteristics, using a reversibly switchable single-impulse panoramic PACT (RS-SIP-PACT) with a single wavelength excitation. The simple structural organization of DrBphPPCM allows engineering a bimolecular PA complementation reporter, a split version of DrBphP-PCM, termed DrSplit. DrSplit enables PA detection of protein-protein interactions in deep-seated mouse tumors and livers, achieving 125-mu m spatial resolution and 530-cell sensitivity in vivo. The combination of RS-SIP-PACT with DrBphP-PCM and DrSplit holds great potential for noninvasive multi-contrast deep-tissue functional imaging.Peer reviewe

    Mapping current trends and hotspots in myasthenia gravis from 2003 to 2022: a bibliometric analysis

    Get PDF
    IntroductionResearch on myasthenia gravis (MG) has undergone rapid development in recent years. This article aimed to elucidate the characteristics of MG publications over the past 20 years and analyze emerging trends using bibliometric methods.MethodsInformation on MG articles was obtained from the Web of Science Core Collection and stored in Excel for quantitative analyses. Bibliometric analyses were performed using CiteSpace and VOSviewer to visualize publications according to countries/regions, institutions, journals, and authors.ResultsA total of 3,610 publications were included in the analysis. The USA had the highest number of publications (NP) and H-index. Among the institutions, the University of Oxford had the highest NP, followed by the University of Toronto and Duke University. Close cooperation was observed among countries and institutions. The most productive author was Renato Mantegazza, followed by Jan J. Verschuuren, and Amelia Evoli. Muscle & Nerve published the most articles on MG, followed by the Journal of Neuroimmunology and Neuromuscular Disorders. The keyword with the highest strength is “neuromuscular transmission,” followed by “safety” and “rituximab.” Co-citation analysis includes 103 publications cited at least 65 times, categorized into four clusters. Additionally, 123 keywords cited more than 40 times were analyzed and divided into five clusters.ConclusionThis bibliometric analysis shows the framework of research over the past 20 years by mapping the scholarly contributions of various countries or regions, institutions, journals, and authors in MG. The analysis also explores future trends and prospective directions, emphasizing individualized treatment based on subtypes, novel immunotherapeutic approaches, and thymectomy

    Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution

    Get PDF
    Imaging of small animals has played an indispensable role in preclinical research by providing high-dimensional physiological, pathological and phenotypic insights with clinical relevance. Yet, pure optical imaging suffers from either shallow penetration (up to ~1–2 mm) or a poor depth-to-resolution ratio (~3), and non-optical techniques for whole-body imaging of small animals lack either spatiotemporal resolution or functional contrast. Here, we demonstrate that stand-alone single-impulse panoramic photoacoustic computed tomography (SIP-PACT) mitigates these limitations by combining high spatiotemporal resolution (125 μm in-plane resolution, 50 μs per frame data acquisition and 50 Hz frame rate), deep penetration (48 mm cross-sectional width in vivo), anatomical, dynamical and functional contrasts, and full-view fidelity. Using SIP-PACT, we imaged in vivo whole-body dynamics of small animals in real time and obtained clear sub-organ anatomical and functional details. We tracked unlabelled circulating melanoma cells and imaged the vasculature and functional connectivity of whole rat brains. SIP-PACT holds great potential for both preclinical imaging and clinical translation
    corecore