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or in part. All the authors listed have approved the manuscript that is enclosed.
Six-degree-of-freedom (6D) sensors increase greatly the measurement capability of traditional 
three-degree-of-freedom (3D) laser trackers. However, there are two main limitations in current 6D 
sensors. The basic limitation is the requirement of a clear line of sight between the tracker and sensor. 
The data are irretrievable during the outage periods. The second limitation is that the data acquisition 
rates of 6D sensors are limit by zoom camera of a laser tracker, which is typically only 100Hz. To 
overcome these limitations, an enhanced 6D measurement method by integrating an Inertial 
Measurement Unit (IMU) with a 6D sensor unit of a laser tracker is proposed. Measurements from 
the IMU and the 6D sensor unit are fused using a Kalman filter and a backward smoothing algorithm. 
The experimental results show that the proposed data fusion method is more stable than using a 
classical Kalman filter only. When the frequency of IMU was 2000 Hz, the raw laser tracking data 
were 2 Hz, the RMS errors of Kalman filter in X positions was 1.182 mm. While the RMS errors of 
the proposed method are 0.031 mm. Other conclusions can be drawn that low speed guarantees high 
precision, and the frequency of the IMU is high enough that it does not affect measurement accuracy 
in practical applications. According to the simulations, the proposed method supports an outage 
period of the laser tracker within 3 seconds.

I hope this paper is suitable for "Optics and Lasers in Engineering". We deeply appreciate your 
consideration of our manuscript, and we look forward to receiving comments from the reviewers.

Sincerely,

Jiarui Lin
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acquisition rate in the 6D sensor unit of a laser tracker. To overcome these 
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illustrated the characteristics of the Kalman filter and backward smoothing.
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4. Section 4.1, the comparation results between the Kalman filter and our method 
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of IMU increases, the errors of 6D in both Kalman filter and our smoother 
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the frequency of IMU is not the main factor to affect data fusion accuracy.”

8. Section 4.4, “The references correspond to 90 seconds of measurement time.” 
was changed to “The simulation time is 90 seconds.” And the text layout of this 
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• The acquisition rate of 6D Sensor Unit of a laser tracker is increased and the problem 
of line of sight is solved by integrating an IMU.

•  A Kalman filter and a backward smoothing algorithm is fusing to ensure high 
precision in 6D including three positions and three rotational orientations.

• The accuracy of proposed algorithm, the influence of T-mac frequency and system 
velocity are verified by a series of comparative experiments.

• The maximum outage time is determined by simulations.
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Abstract
Six-degree-of-freedom (6D) sensors enhance the measurement capability of traditional 
three-degree-of-freedom (3D) laser trackers. However, the classical 6D measurement 
techniques still have shortcomings in actual use, such as the problem of line of sight 
and relatively low data acquisition rate. The proposed approach by integrating an 
Inertial Measurement Unit (IMU) with a 6D sensor unit of a laser tracker is effective to 
overcome these limitations. The error is corrected by the combination of Kalman filter 
and a backward smoothing algorithm. The Kalman filter only works when the 6D 
sensor’s data coms, while the backward smoothing algorithm works during the whole 
process. The experiments are performed to compare the error in three positions and 
three rotational orientations between the proposed method and the Kalman filter and 
evaluate the effects of different rates and IMU frequencies on the algorithm. The 
simulations are also performed to estimate the maximum outage time. The results verify 
that the proposed method can solve the problem of line of sight and low data acquisition 
rate effectively.

Keywords: laser tracker, 6D sensor, 6D measurement, IMU, data fusion, optical 

dimensional metrology

1. Introduction
Six-degree-of-freedom (6D) measurement systems have been investigated widely 
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in applications such as navigation and detection [1, 2], motion tracking [3-5] and three-
degree-of-freedom (3D) measurement [6, 7]. Measurement systems based on 6D 
sensors of a laser tracking can fulfill requirement in most measurement tasks [8, 9]. 
Laser trackers have characteristics of high accuracy, reliability, durability, mobility, 
large working volume (up to hundred meters), flexible layout, and a high degree of 
automation. In addition to single-point reflector measurement, the 6D laser tracking 
system that acquire not only position (x, y, and z) but also rotational orientation (roll, 
pitch, and yaw) data, which expands the measurement scope and the applications of 
traditional 3D laser trackers. In universal using process of 6D laser tracking system, the 
6D sensors are attached to the measured object directly, and the laser tracker serves as 
the reference to acquire 6D information. Several 6D sensors have been proposed in 
prior literatures which mainly differ in their rotational orientation determination 
approaches. A classic one is reported in [10], where a cluster of LED targets 
surrounding the reflector with known geometry is captured by a separate motorized 
zoom camera. The rotational orientation is determined from a standard space resection. 
Another well-known method is introduced in [11]. A pinhole retro-reflector is used, 
where the apex of the prism is removed. Part of the tracker beam passes through the 
pinhole and projects onto an image sensor. The pitch and yaw angles are determined by 
a perspective projection, and the roll angle is determined by a tilt sensor. Other works 
about 6D sensors are presented in [12-16]. 

However, there are still limitations in current 6D sensors. The basic limitation is 
the requirement for a clear line of sight between the tracker and sensors. It is common 
to find that 6D data is lost in cases of the beam or LED cluster interruptions [10, 11], 
particularly in cluttered environments or when undertaking complex measurement tasks. 
Though the auto-lock algorithms have been developed to cope with beam interruption 
and the sophisticated omnidirectional sphere reflectors have been designed, the prudent 
operation is still need to avoid data loss. Sometimes, the viewing position of the tracker 
must be moved to measure hidden points, whose labor cost slow down the measurement 
process. For all these, the line of sight issue still cannot addressed completely because 
data are irretrievable during the outage periods.

A second limitation is that the data acquisition rate of the 6D sensors are limited 
by individual sensor performance, such as low shutter speed for an image sensor and 
low-frequency response for a tilt sensor. Taking the classic 6D laser tracking system 
for instance, the bandwidth is limited by the zoom camera of a laser tracker, which is 
typically only 100 Hz [26] (Figure 1). However, the low data rate cannot meet certain 
cases. For example, the 6D motion of a portable stereo line-scan sensor [7] require the 
data processing frequencies greater than a few kilohertz. Considering the trade-off 
between frame rate, resolution, and pixel size, it is difficult to increase the frame rate 
further. Additionally, as the data rate increases, it will be more difficult to recognize 
and distinguish the LED targets.

In order to overcome these limitations, this paper presents an enhanced 6D 
measurement approach by integrating an Inertial Measurement Unit (IMU) with a 6D 
sensor unit of a laser tracker. In the case of laser tracker outages that are caused by loss 
of line of sight between the 6D sensor unit and the laser tracker, the IMU is used instead 
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for 6D positioning. It is completely self-contained after power-up and may operate in 
any environment. Secondly, the integrated system is able to work at a superior data 
processing rate that coincides with the IMU’s sampling rate. It has a considerably 
higher data rate (up to 10 kHz) when compared to that of laser trackers. These features 
will contribute to performance improvements for a 6D laser tracker, in terms of 
robustness, flexibility, and data rate.

 Considering the cost and portability, a Micro-Electro-Mechanical System 
(MEMS) IMU was proposed in [17]. However, MEMS IMUs are typically very noisy 
and signals may drift. Due to the integral property, the accumulated error caused by 
drift increases rapidly over time. Therefore, the IMU is usually used with an aiding 
sensor to correct the error, such as GPS and vision sensors [18-21]. The Kalman filter 
and its derivatives are universally recognized in fusing IMU and other sensors’ signals 
[22, 23]. And these integrate systems are widely used in simultaneous localization and 
mapping (SLAM) [24]. However, the accuracy of localization and the Kalman filter is 
too low to fulfill the measurement requirements. Therefore, in this paper, a Kalman 
filter is followed by a backward smoothing algorithm [25], and the 6D laser tracker 
behaves as an additional sensor to improve the overall performance. In this way, the 
integrated system can solve the limitation of line of sight and low data rate problem 
under the premise of ensuring accuracy.

The remaining of the paper is organized as follows: Section 2 describes the system 
configuration. Section 3 explains the basic theory of the proposed method, including 
the Kalman filter and backward smoothing algorithm. Experiments comparing the 
proposed method with classical Kalman filtering are reported in Section 4. Furthermore, 
the impact of various kinematic velocities, IMU and 6D laser tracker bandwidths on the 
algorithm are also analyzed. In addition, simulations are made to estimate the maximum 
allowable outage time. Finally, conclusions are summarized in Section 5.

2. System Description
The main hardware components that constitute the system are shown in Fig. 1. The 

system consists of a commercial 6D Laser Tracker System, which incorporates a laser 
tracker with a 6D sensor unit called T-Mac (AT 901 LR & T-Cam & T-Mac, Leica 
Geosystems) [26], and an IMU (STIM 300, Sensonor AS) composed of three gyro 
sensors and three accelerometers [27]. The IMU is attached rigidly to the T-Mac to 
constitute an integrated 6D sensor. The laser tracker measures location and angular 
attitude of the T-Mac whenever the retro-reflector and at least three LED markers are 
in sight. The IMU estimates triaxial angular rates and accelerations, from which 
position and attitude can be calculated by an integration algorithm. The two systems 
work with a common clock but with different data processing rates.
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Laser 
Tracker

IMU

6D 
Sensor

Line of sight of 
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Line of sight of 
retro-reflector

Retro-reflector LED 
Markers

Zoom 
camera

Figure 1. Configuration of the multi-sensor system.

The 6D laser tracker and IMU are heterogeneous systems. The general idea of the 
proposed method is that the IMU is used to bridge the laser tracker outages whereas the 
laser tracker is used for the in-motion correction of the IMU errors. The workflow is 
described in Fig. 2. Laser tracker outages stem from two major aspects, namely, the 
gaps between successive tracker measurements and loss of line of sight between the 6D 
sensor unit and the laser tracker. In the case of laser tracker outages, the IMU provides 
6D positioning on its own until the tracker signal is recovered. This feature reduces the 
line of sight concerns and enables the sensor unit to move along its commanded 
measurement path, as long as the tracker can recapture the 6D sensor signals after an 
interruption. In our algorithm, data from two systems are fused and therefore a 
continuous and high-rate measurement can be accomplished regardless of momentary 
laser tracker outages.

 In the case of outages, the position and attitude errors at none-tracker clock times 
are completely governed by the IMU errors as shown in Fig. 2(b). The accumulated 
errors increase with time until the end of the outage. To deal with these errors, a data 
fusion algorithm is applied each time a new laser tracker measurement arrives. At time 

, the accumulated errors of the IMU are estimated and corrected by fusing 𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑟( + )

the data from both systems. As shown in Fig. 2(b), the errors can be corrected only at 

time . With backward smoothing, the errors  𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑟( + )in classical Kalman filtering

between times  can also be corrected. This procedure is to be repeated  𝑡𝐼𝑀𝑈…

throughout the entire measuring process.
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Kalman

Back 
Smoother

Errors

ttracker ttracker(+)tIMU…

End of 
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Accumulated 
Error

Figure 2. Diagram of the workflow and the error propagation. (a) The main workflow, (b) accumulated 
errors of the IMU during tracker outages.

3. Principle of the Proposed Method
The rigid transformations from IMU to 6D sensor is calibrated geometrically in 

advance. As depicted in Fig. 3(a), the IMU body frame (Ob-XbYbZb) is defined with its 
origin at the lower-left corner, and the axes are perpendicular to the mechanical housing. 
The IMU body frame is constructed in the laser tracker frame by using a probing tip. In 
Fig. 3(b), the 6D sensor frame (Os-XsYsZs) and laser tracker (Or-XrYrZr) are also 
defined. The 6D transformation between the IMU and the 6D sensor unit is determined 
by taking the laser tracker as an intermediate frame. Rs

r and Ts
r are the rigid 

transformations from the 6D sensor frame to the laser tracker frame. Rb
r and Tb

r 
represent the rigid transformation from the IMU body frame to the laser tracker frame. 
The described method is relatively straightforward to implement and does not require 
compensation of IMU bias and noise errors, unlike existing approaches such as 
modified hand-eye calibration [28]. 

Xs

Ys

Zs

(b)(a)

Zb

Xb

Yb

Z-ref. 
Plane

6D sensor 
frame

IMU 
frame

Laser tracker 
frame

Yr
Xr

Zr

Rs
r Ts

r
Rb

r Tb
r

Os

Ob

Or

Yb

Xb Zb

Ob

Y-ref. Plane

Probing Tip

Figure 3. Calibration of the IMU-6D sensor unit relative pose. (a) Definition of the IMU body frame, 
(b) calibration by probing tip.
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The emphases of this paper is to solve the accumulated error of the data during the 
outage time. It is dealt by two steps. First, the Kalman filter is used to correct the error 
at the tracker measurement time. It can remove most error at tracker measurement time. 
Second, the errors at IMU time are compensated by a backward smoothing algorithm. 
Throughout this paper, a symbol with an accent (^) represents an estimated variable, 
while the tilde accent (~) represents a noisy measurement. A subscript for a 
transformation represents the source frame, while the corresponding superscript 
represents the destination frame. 

3.1 Kalman Filter
A closed-loop configuration of an error state is implemented, as depicted in Figure 

4. The IMU serves to keep updating estimates according to its kinematics. When a full 
6D measurement set is received, the Kalman filter will be executed, errors will be 
estimated and corrections injected into the nominal states. Then the corrected estimates 
are fed back and used as prior information for follow-on process.

Angular Rates 
and 

Accelerations

Bias 
corrections

Attitude Update
Velocity Update
Position Update

Kalman
Filter

Tracker
Measurements

Synchronizing

Calibration

Figure 4. Block diagram of the integrated system incorporating a Kalman filter.

The Kalman filter estimates the attitude, velocity, and position errors. The attitude 
is described using the Euler angle representation. In order to facilitate accurate state 
estimates, the errors in the IMU signals, which are not directly measurable, are modeled 
and estimated. The static bias is modeled as a random constant process. The dynamic 
bias is modeled as a first-order Gauss-Markov process [29]. The error state is described 
by the vector
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𝛿𝒙 = [𝛿𝝍𝑇 𝛿𝒗𝑇 𝛿𝒑𝑇 𝒃𝑇
𝑔 𝒃𝑇

𝑓 𝛿𝒃𝑇
𝑔 𝛿𝒃𝑇

𝑓]𝑇
(1)

Vectors ,  and  are Euler angles, velocity, and position errors, respectively.    𝛿𝝍 𝛿𝒗 𝛿𝒑
Vectors , , , and  denote the static and dynamic biases of the 𝒃𝑔 𝒃𝑓 δbg δbf
gyroscopic and accelerometer measurements, respectively.

3.1.1 System Equations
The Kalman filter error state system model is given by

𝛿𝒙(𝑡) = 𝑭(𝑡)𝛿𝒙(𝑡) + 𝑮(𝑡)𝜼(𝑡) (2)

The system matrix, , and noise covariance matrix, , are expressed in terms of 3 × 3 𝑭 𝑮
submatrices as follows:

 

𝑭(𝑡) = [
𝟎 𝟎 𝟎 𝑹𝑡

𝑏 𝟎 𝑹𝑡
𝑏 𝟎

[(𝑹𝑡
𝑏(𝒇𝑏 ‒ 𝒃𝑓 ‒ 𝛿𝒃𝑓))

× ] 𝟎 0 𝟎 𝑹𝑡
𝑏 𝟎 𝑹𝑡

𝑏

𝟎 𝑰 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝑑𝑖𝑎𝑔[ ‒

𝟏
𝝉𝑔

] 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝑑𝑖𝑎𝑔[ ‒
𝟏
𝝉𝑓

]
]

𝑮 = [𝑹𝑡
𝑏 𝟎 𝟎 𝟎

𝟎 𝑹𝑡
𝑏 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎
𝟎 𝟎 𝟎 𝑰

]
(3)

These matrices are derived based on the IMU error kinematics in [30]. In Eq. (3),  𝑹𝑡
𝑏

is the rotation matrix from the IMU body coordinate frame to the laser tracker frame. 
 represents noisy outputs from the tri-axial accelerometers.  and  are 𝒇𝑏 𝝉𝑔 𝝉𝑓

correlation times of the IMU dynamic bias errors. The diagonal matrix is expressed as 
diag[ ]. The symbol  represents anti-symmetric matrix. The system noise vector  

 complies with a Gaussian distribution , in which𝜼  𝜼 ∼ 𝛮{𝟎, 𝑸}

𝑸 = 𝑑𝑖𝑎𝑔[𝝈2
𝑔 𝝈2

𝑓 𝝈 2
𝑔𝛿𝑏 𝝈 2

𝑓𝛿𝑏] (4)

where  and  are respectively standard deviations of the gyroscopic and 𝝈𝑔 𝝈𝑓
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accelerometers random noise errors, and  and  are the standard deviations 𝝈𝑔𝛿𝑏 𝝈𝑓𝛿𝑏

of the dynamic bias errors. These specifications can be derived from real data by the 
Allan variance method or as specified in the IMU datasheet.

The IMU works in practice at discrete intervals of time. To cope with this, it is 
necessary to convert the model into a discrete form. The discrete error-state model can 
be expressed as

𝛿𝒙𝑘 = 𝜱𝑘 𝑘 ‒ 1𝛿𝒙𝑘 ‒ 1 + 𝑮𝑘 ‒ 1𝜼𝑘 ‒ 1 (5)

where  and  are respectively the error state and system noise errors at 𝛿𝒙𝑘 ‒ 1 𝜼𝑘 ‒ 1

time .  is the state transition matrix from time  to time , and 𝑡𝑘 ‒ 1 𝜱𝑘 𝑘 ‒ 1 𝑡𝑘 ‒ 1 𝑡𝑘

 is the appropriate error matrix. The matrix  is derived by truncating the 𝑮𝑘 ‒ 1 𝜱𝑘 𝑘 ‒ 1

power-series expansion of the system matrix . The first-order solution is 𝑭

𝜱𝑘 𝑘 ‒ 1 = 𝑰 + 𝑭𝜏𝑖𝑚𝑢 (6)

3.1.2 Measurement Equations
The laser tracker provides the position and attitude signals for the 6D sensor unit, 

which are used as measurement updates for the Kalman filter. The differencing of the 
laser tracking measurements and the corresponding inertial system estimates introduces 
the measurement innovation. The measurement vector comprises the differences in 
attitude and position between the IMU and tracker:

𝛿𝒚 = [𝛿𝒚𝜓
𝑇 𝛿𝒚𝑝

𝑇]𝑇
= [𝝍𝑇 ‒ 𝝍 𝑇

𝑇𝑟𝑎𝑐𝑘𝑒𝑟 𝒑𝑇 ‒ 𝒑 𝑇
𝑇𝑟𝑎𝑐𝑘𝑒𝑟]𝑇

(7)

where  and  are the sensor unit’s Euler angles and 3D position 𝝍𝑇𝑟𝑎𝑐𝑘𝑒𝑟 𝒑𝑇𝑟𝑎𝑐𝑘𝑒𝑟
measured by the laser tracker,  and  are corresponding derived values from the 𝝍 𝒑
raw angular rates and accelerations, by a recursive dead reckoning process, and  𝛿𝒚𝜓
and  are their differences.𝛿𝒚𝑝

The measurement model is given by

𝛿𝒚 = 𝑯𝛿𝒙 + 𝝂 (8)

where matrix  is known as the measurement matrix, and  denotes the 𝑯 𝝂 ∼ 𝛮{𝟎, 𝑹}
measurement error. The covariance matrix , is defined as𝑹
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𝑹 = 𝑑𝑖𝑎𝑔[𝝈2
𝜓 𝝈2

𝑝] (9)

whose diagonal entries  and  are respectively the variances of the measured 𝝈2
𝜓 𝝈2

𝑝
Euler angles and 3D position, which are related to specific tasks. The critical parameter 
(Kalman gain) in this Kalman filter is dominated by the error noise covariance matrix 
rather than measurement noise covariance matrix. In general, the measurement noise 
covariance can be calculated according to the IMU manufacturer specifications, or by 
repetitive static measurements.

Since the laser tracker and IMU body frames are aligned, the measurement matrix 
consists simply of identity sub-matrices and null sub-matrices, expressed as

𝑯 = [𝑰 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝑰 𝟎 𝟎 𝟎 𝟎] (10)

3.1.3 Kalman Filter Algorithm
Equations (2) and (8) are the system and measurement equations that define the 

Kalman filter. At each arrival of a new laser tracking measurement, a measurement 
update is executed to generate the optimal estimates of the error states. Then the inertial 
system estimates at the measurement time are corrected. After this step, the IMU errors 
will continue to propagate, due to the random noise and uncompensated bias errors, 
until the next measurement comes. The equations for the Kalman filter are 

𝜹𝒙𝑘 𝑘 ‒ 1 = 𝜱𝑘 𝑘 ‒ 1𝜹𝒙𝑘 ‒ 1 𝑘 ‒ 1
𝑷𝑘 𝑘 ‒ 1 = 𝜱𝑘 𝑘 ‒ 1𝑷𝑘 ‒ 1/𝑘 ‒ 1𝜱 𝑇𝑘 𝑘 ‒ 1 + 𝑸𝑘 ‒ 1

𝑸𝑘 ‒ 1 = 𝑮𝑘 ‒ 1𝑸𝜏𝐼𝑀𝑈𝑮 𝑇
𝑘 ‒ 1

𝑲𝑘 = (𝑷𝑘 𝑘 ‒ 1𝑯𝑇)(𝑹 + 𝑯𝑷𝑘 𝑘 ‒ 1𝑯𝑻) ‒ 1

𝜹𝒙𝑘/𝑘 = 𝜹𝒙𝑘 𝑘 ‒ 1 + 𝑲𝑘(𝛿𝒚𝑘 ‒ 𝑯𝜹𝒙𝑘 𝑘 ‒ 1)
𝑷𝑘/𝑘 = (𝑰 ‒ 𝑲𝑘𝑯)𝑷𝑘 𝑘 ‒ 1

(11)

The first three equations comprise the system propagation (prediction) phase based on 
the previous best estimation, whilst the remaining steps comprise the measurement 
update (correction) phase. The subscript k is used to denote the IMU clock index. The 
time-propagated state estimates and covariance are denoted by  and . 𝛿𝒙𝑘 𝑘 ‒ 1 𝑷𝑘 𝑘 ‒ 1
Their counterparts following the measurement update are denoted by  and . 𝛿𝒙𝑘/𝑘 𝑷𝑘/𝑘
However, in the case of a laser tracker outage or during IMU cycles between successive 
tracker measurements, no measurement updates are available. Therefore, the 
measurement error covariance matrix norm will tend to  and therefore the Kalman ∞
gain matrix  will be zero. The covariance matrix  should be set initially as a 𝑲𝑘 𝑷
diagonal matrix before the first iteration, whose entries are chosen according to the 
expected variances of the initial error states.

After each measurement update, the inertial system estimates at the measurement 
time are corrected with the current best-estimate errors. Velocity and position can be 
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corrected by simply subtracting the estimated errors from the inertial system estimates 
of these quantities:

                             (12)𝒗 = 𝒗 ‒ 𝛿𝒗
𝒑 = 𝒑 ‒ 𝛿𝒑

Attitude correction is applied by the direction cosine matrix representation:

                       (13)𝑹{𝝍} = (𝐈 ‒ [𝛿𝝍 × ])𝑹{𝝍}

where  is the rotation matrix associated to a set of decoupled Euler angles. The 𝑹{ }
conversion between a rotation matrix and a set of Euler angles is described in [31].

3.2 Backward Smoothing Algorithm
In the previously described Kalman filter, no measurement update is made between 

tracker updates, which explicitly implies time-dependent error growth after a 
measurement update until the next measurement becomes available again. In 
continuous measurement, the estimation errors should be corrected at all IMU clock 
times. To reduce estimation errors during laser tracker measurement outages, backward 
smoothing is used. In this paper, a Rauch, Tung, and Striebel (RTS) method is applied 
[25], which is a very efficient fixed interval smoothing algorithm. The smoother the 
measurement information is, after as well as before the time of interest, the more precise 
the estimation is expected to be. In Fig.2 (b), the blue line is the integral process of 
IMU. Since the data of the 6D sensor occur at time tracker(+), the accumulated error 
eliminate suddenly. But the error during the tIMU still exist. The backward smoothing 
algorithm starts with time ttracker(+) and reverses filtering fusion of data. The error is 
shown in the red line. Therefore, the backward smoothing algorithm is more accurate 
than the Kalman filter theoretically.

In the RTS method, a conventional Kalman filter runs forward in time as a first 
step. The error state vector , the error covariance matrix , after each system 𝛿𝒙 𝑷
propagation and measurement update, and the transition matrix , are recorded. Once 𝜱
the end of the data set is reached, smoothing begins, starting at the end and sweeping 
backwards. The smoothing gain on each iteration is given by:

𝛿𝒙𝑘 𝑠𝑚𝑜𝑜𝑡ℎ = 𝛿𝒙𝑘 𝑘 + 𝑨𝑘(𝛿𝒙𝑘 + 1 𝑠𝑚𝑜𝑜𝑡ℎ ‒ 𝛿𝒙𝑘 + 1 𝑘)

𝑨𝑘 = 𝑷𝑘 𝑘𝜱𝑘 + 1 𝑘
𝑇𝑷 ‒ 1𝑘 + 1 𝑘

𝑷𝑘 𝑠𝑚𝑜𝑜𝑡ℎ = 𝑷𝑘 𝑘 + 𝑨𝑘(𝑷𝑘 + 1 𝑠𝑚𝑜𝑜𝑡ℎ ‒ 𝑷𝑘 + 1 𝑘)𝑨𝑇
𝑘

(14)

where  and  are the smoothed states and covariance matrix, 𝛿𝒙𝑘 𝑠𝑚𝑜𝑜𝑡ℎ 𝑷𝑘 𝑠𝑚𝑜𝑜𝑡ℎ

respectively,  and  are updated states and covariance matrix, respectively,  𝛿𝒙𝑘 𝑘 𝑷𝑘 𝑘

and  and  are predicted states and covariance matrix, respectively. 𝛿𝒙𝑘 + 1 𝑘 𝑷𝑘 + 1 𝑘
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 is usually termed as a smoother gain matrix. Since the RTS smoother estimation is 𝑨𝑘

posteriori, its output will incur a lag. In practice, by making use of information from a 
limited period after the time of interest, the smoother can also be used to provide a 
quasi-real-time solution.

After the errors for all IMU clock times are estimated by the smoothing method, 
the inertial system estimates are corrected using Eqs. (12) and (13).

4. Experiments
A series of experiments were carried out to check the performance of the proposed 

method. A commercial 6D laser tracker (AT 901 LR & T-Mac, Leica Geosystems [26]) 
and a tactical-grade MEMS IMU (STIM 300, Sensonor AS [27]) were used for system 
integration. Figure 5(a) shows the experimental setup. The integrated 6D sensor unit is 
rigidly mounted on a turntable, approximately 100 mm from the rotation center. The 
laser tracker is placed about 4 m from the sensor. The spatial relationship between the 
6D sensor and the IMU was calibrated prior to data collection. An expandable industrial 
PC was used to acquire, process and record data, as well as to control the sensors. The 
6D laser tracker can provide a position accuracy of ±15 µm + 6 µm/m and typical 
rotation accuracy of 0.01°. The functional specification of the IMU was measured 
beforehand using the Allan variance method, according to [32, 33], where data are 
collected for 20 hours after powering on for 2 hours, to achieve thermal stability. The 
attributes are listed in Table 1.

Figure 5. The experimental setup.

Table 1. Obtained specifications of STIM 300 from Allan variance analysis.

Parameter X-Axis Y-Axis Z-Axis Unit
Gyro
Bias Instability 1.250 1.203 1.324 °/hr
Angular Random 0.510 0.528 0.528 °/√hr
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Walk
Correlation Time 8000 8000 8000 s
Accelerometer
Bias Instability 0.041 0.038 0.029 mg
Velocity Random 
Walk 0.132 0.138 0.108 m/s/√hr

Correlation Time 800 800 800 s

The turntable was programmed to rotate from -30° to 30° and was held stationary 
for a short period of time before and after rotation. Since the turntable can provide an 
angle accuracy of 1 arcsecond, the integrated sensor unit runs through a standard 
circular trajectory with a radius of the eccentric distance. The cubic spline interpolation 
of the angular and position trajectories of the 6D sensor unit at 100 Hz are used as 
references.

4.1 Different T-Mac frequencies
The purpose of these experiments is to observe the effect of different T-Mac 

frequencies on accuracy. The frequency of IMU was fixed to 2000 Hz and the rotating 
speed of turntable was 3 °/s. For performance comparison, the raw laser tracking data 
were set to 100 Hz, 50 Hz, 20 Hz, 10 Hz, 5 Hz, 2 Hz, and 1 Hz. Hence seven groups of 
datasets were fused using the proposed algorithm.

Fig. 6 shows fusion results at the measurement frequencies. To illustrate the actual 
behavior of the IMU accumulated error and make a comparison with our method, the 
results with Kalman filter only are also plotted. In Kalman curve, the trajectories 
become corrupt as the measuring laser tracker frequency decreases and the accumulated 
error drift dramatically until the next laser tracker measurement time comes. In 
comparison, the backward smoother is able to remove most of the accumulated errors 
of all IMU times. The drift effects are well-managed. The comparative experimental 
results illustrate that the backward smoothing procedure is essential for obtaining high 
fidelity results. It can also be seen that the gaps between adjacent laser tracking 
measurements are filled by the inertial system estimates. The data processing rate is 
increased from the laser tracker’s measuring frequency to the IMU’s sampling 
frequency. The angular measurements are also compared. They have similar 
performances.
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Figure 6. Estimated trajectories with different measuring frequencies, as well as 6D laser tracking 
trajectory. The blue lines are the backward smoothing results and the red lines are the results with 

Kalman filtering only, while the black dotted lines represent the laser tracking trajectories.

For each measuring frequency, the deviations of angle and position from each point 
to interpolated trajectory points were computed as errors. The statistical results of the 
deviations were evaluated. The root-mean-square (RMS) values are listed in Table 2. 
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In order to demonstrate the changes more clearly, the RMS values also show in Figure 
7. 

Table 2.  RMS Errors of different frequency

Frequency 
(Hz)

Approach Roll 
(deg)

Pitch 
(deg)

Yaw 
(deg)

X 
(mm)

Y 
(mm)

Z 
(mm)

Kalman 0.0004 0.0006 0.0004 0.004 0.009 0.005
100

Smoother 0.0001 0.0001 0.0001 0.003 0.005 0.003

Kalman 0.0008 0.0011 0.0008 0.005 0.010 0.006
50

Smoother 0.0002 0.0002 0.0002 0.003 0.005 0.003

Kalman 0.0009 0.0013 0.0017 0.009 0.016 0.008
20

Smoother 0.0002 0.0003 0.0003 0.003 0.005 0.003

Kalman 0.0012 0.0017 0.0028 0.025 0.038 0.017
10

Smoother 0.0003 0.0004 0.0010 0.003 0.005 0.004

Kalman 0.0018 0.0024 0.0031 0.124 0.138 0.054
5

Smoother 0.0005 0.0006 0.0018 0.008 0.009 0.008

Kalman 0.0029 0.0039 0.0066 1.182 1.318 0.376
2

Smoother 0.0007 0.0009 0.0049 0.031 0.049 0.029

Kalman 0.0071 0.0075 0.0360 6.886 7.573 1.865
1

Smoother 0.0015 0.0017 0.0326 0.106 0.259 0.130
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Figure 7. The RMS trends of each angle and position change with different T-Mac frequencies. 
The blue and red lines show the RMS of the Kalman filter and Smoother results, respectively.

From Fig. 7, it can be inferred that the errors of both methods are close to zero 
when the measuring frequency is larger than 5 Hz. When the frequency of T-Mac is 
large enough, the two methods have little difference. However, if the frequency of T-
Mac decreases, the proposed method shows better performance than the conventional  
Kalman filter alone. 

4.2 Different rotating speeds
The purpose of these experiments is to observe the effect of different rotating 

speeds on accuracy. The frequency of IMU was set to 1000 Hz and only the RMS values 
of the proposed method are shown in Fig. 8. The frequencies of the T-Mac were set to 
100 Hz, 50 Hz, 20 Hz, 10 Hz, 5 Hz, 2 Hz, and 1 Hz as in the previous experiments. The 
rotating speed of the turntable was set to 3°/s and 5°/s, respectively.
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Figure 8. The RMS trends of each angle and position change with different T-Mac 
frequencies. When the rotating speed of turntable was 3°/s, the results are shown in red. When the 

speed was 5°/s, the results are shown in blue.

Figure 8 shows the RMS values of three positions and three rotational orientations 
at different rotating speeds of the turntable at different T-Mac frequencies. As shown 
in Figure 8, it can be inferred the rotating speed of turntable has no effect on 
measurement accuracy when the measuring frequency is larger than 5 Hz. However, as 
the frequency of T-Mac decreases, the RMS values increase significantly. The errors 
increase dramatically at the higher rotating speed. This indicates that lower movement 
speed is beneficial to improve accuracy during an outage.

4.3 Different IMU frequencies
The purpose of these experiments is to observe the effect of different IMU 

frequencies on accuracy. The frequency of the T-Mac was fixed to 2 Hz and the rotating 
speeding of the turntable was set to 3°/s. The frequency of the IMU was set to 500 Hz, 
1000 Hz, and 2000 Hz, respectively. Both Kalman filter and Smoother results are 
shown in Fig. 9.
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Figure 9. The RMS trends of each angle and position change with different IMU frequencies. 
The blue and red lines show the RMS of the Kalman filter only and Smoother, respectively.

From Fig.9, as the frequency of IMU increases, the errors of 6D in both Kalman 
filter and our smoother method are not regular. The reason is the frequency of IMU is 
high enough to make results irregular. It can be inferred that as the data rate is high 
enough, the frequency of IMU is not the main factor to affect data fusion accuracy.

4.4 Simulation
Besides real experiments, the simulations were designed to test the performance of the 
data fusion method in the outage case. The results involved fusing real IMU data at 
2000 Hz and real laser tracker data at 20 Hz as references. The true values of the IMU 
and laser tracker data were generated from the references and downsampling to 500 Hz 
and 10 Hz, respectively. The simulated laser tracker data and IMU data were obtained 
by adding noise and bias errors to the reference values. For better graphical presentation, 
all trajectories were transformed into the IMU frame at the initial position. The 
simulation time is 90 seconds. For performance comparison, the outage durations of the 
laser tracker data occurred at 45 seconds and were set to 0.2, 0.5, 1, 2, 3, 5 seconds, 
respectively. Fig. 10 shows data fusion results with different outage periods. The error 
of the fitting trajectory of Kalman filter is clearly visible, especially when the outage 
duration is longer than 1 second. However, the data fusion results of backward 
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smoothing are convergent to the reference trajectory. Errors are also quantified as the 
differences between the data fusion results and the references during the outage period. 
The RMS values are listed in Table 3. 

Figure 10 Estimated trajectories with different outage times, as well as the reference trajectory. The 
blue solid lines are the backward smoothing results and the red solid lines are the results with Kalman 

filter only, while the black dotted lines represent the simulation reference.

Table 3.  RMS Errors of different interruption time

Interruption 
Time (s)

Approach Roll 
(deg)

Pitch 
(deg)

Yaw 
(deg)

X 
(mm)

Y 
(mm)

Z 
(mm)

0.2 Kalman 0.0020 0.0035 0.0040 0.205 0.117 0.001
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Smoother 0.0035 0.0052 0.0015 0.029 0.020 0.017

Kalman 0.0021 0.0053 0.0030 1.261 0.662 0.095
0.5

Smoother 0.0030 0.0043 0.0011 0.070 0.035 0.031

Kalman 0.0072 0.0122 0.0020 6.582 3.628 0.509
1

Smoother 0.0031 0.0044 0.0009 0.102 0.038 0.015

Kalman 0.0073 0.0106 0.0015 23.090 7.824 1.076
2

Smoother 0.0067 0.0126 0.0008 0.106 0.127 0.155

Kalman 0.0066 0.0151 0.0014 50.760 22.890 3.514
3

Smoother 0.0049 0.0144 0.0008 0.325 0.261 0.423

Kalman 0.0126 0.0344 0.0013 126.400 73.570 6.057
5

Smoother 0.0082 0.0125 0.0007 1.369 1.932 0.668

As shown in Table 3, outage periods affect the accuracy of the 6D measurement 
results. With the Kalman filter only, when the information provided by the laser tracker 
is interrupted over 0.5 seconds, the error of position is greater than 1 mm. However, 
using the backward smoothing algorithm, when the interruption time is less than 3 
seconds, the position error is still less than 0.5 mm. The similar improvements can also 
be seen in the angle measurements. Therefore, for outages of 2 to 3 seconds, the 
integrated system can yield high fidelity 6D measurements results.

5. Conclusions
In this paper, a backward smoothing algorithm combined with a Kalman filter is 

proposed to enhance 6D Measurement by integrating an IMU with a 6D sensor unit (T-
Mac) of a laser tracker. The distinct advantage of the proposed method is that the data 
acquisition rates of the integrated system are increased from the laser tracker's inherent 
measuring frequency to the IMU's sampling frequency. Hence, it is able to estimate the 
6D measurements during an outage period of a laser tracker. According to analysis and 
evaluation, the following conclusions can be drawn:

(a) The proposed data fusion method is more stable than using a classical Kalman 
filter only, especially when the acquisition frequency of the 6D sensor unit of 
the laser tracker is reduced.
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(b) The movement speed of the integrated system is related to accuracy. During an 
outage or period of low-frequency operation of the T-Mac, low speed performs 
high precision. Furthermore, the frequency of the IMU is high enough that it 
does not affect measurement accuracy in practical applications.

(c) The proposed fusion method corrects most of the IMU errors at the end of the 
outage intervals. According to the experiments and simulations, the proposed 
algorithm is valid when the laser tracker frequency is down to 1 Hz. It also 
supports an outage period of the laser tracker within 3 seconds.

Therefore, the method in this paper expands the application scope for a 6D sensor unit 
of a laser tracker. It is possible to increase measurement speed and mitigate the effect 
of line of sight blockages during measurements for a short period.
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Table 1. Obtained specifications of STIM 300 from Allan variance analysis.

Parameter X-Axis Y-Axis Z-Axis Unit
Gyro
Bias Instability 1.250 1.203 1.324 °/hr
Angular Random 
Walk 0.510 0.528 0.528 °/√hr

Correlation Time 8000 8000 8000 s
Accelerometer
Bias Instability 0.041 0.038 0.029 mg
Velocity Random 
Walk 0.132 0.138 0.108 m/s/√hr

Correlation Time 800 800 800 s



Table 2.  RMS Errors of different frequency

Frequency 
(Hz)

Approach Roll 
(deg)

Pitch 
(deg)

Yaw 
(deg)

X 
(mm)

Y 
(mm)

Z 
(mm)

Kalman 0.0004 0.0006 0.0004 0.004 0.009 0.005
100

Smoother 0.0001 0.0001 0.0001 0.003 0.005 0.003

Kalman 0.0008 0.0011 0.0008 0.005 0.010 0.006
50

Smoother 0.0002 0.0002 0.0002 0.003 0.005 0.003

Kalman 0.0009 0.0013 0.0017 0.009 0.016 0.008
20

Smoother 0.0002 0.0003 0.0003 0.003 0.005 0.003

Kalman 0.0012 0.0017 0.0028 0.025 0.038 0.017
10

Smoother 0.0003 0.0004 0.0010 0.003 0.005 0.004

Kalman 0.0018 0.0024 0.0031 0.124 0.138 0.054
5

Smoother 0.0005 0.0006 0.0018 0.008 0.009 0.008

Kalman 0.0029 0.0039 0.0066 1.182 1.318 0.376
2

Smoother 0.0007 0.0009 0.0049 0.031 0.049 0.029

Kalman 0.0071 0.0075 0.0360 6.886 7.573 1.865
1

Smoother 0.0015 0.0017 0.0326 0.106 0.259 0.130



Table 3.  RMS Errors of different interruption time

Interruption 
Time (s)

Approach Roll 
(deg)

Pitch 
(deg)

Yaw 
(deg)

X 
(mm)

Y 
(mm)

Z 
(mm)

Kalman 0.0020 0.0035 0.0040 0.205 0.117 0.001
0.2

Smoother 0.0035 0.0052 0.0015 0.029 0.020 0.017

Kalman 0.0021 0.0053 0.0030 1.261 0.662 0.095
0.5

Smoother 0.0030 0.0043 0.0011 0.070 0.035 0.031

Kalman 0.0072 0.0122 0.0020 6.582 3.628 0.509
1

Smoother 0.0031 0.0044 0.0009 0.102 0.038 0.015

Kalman 0.0073 0.0106 0.0015 23.090 7.824 1.076
2

Smoother 0.0067 0.0126 0.0008 0.106 0.127 0.155

Kalman 0.0066 0.0151 0.0014 50.760 22.890 3.514
3

Smoother 0.0049 0.0144 0.0008 0.325 0.261 0.423

Kalman 0.0126 0.0344 0.0013 126.400 73.570 6.057
5

Smoother 0.0082 0.0125 0.0007 1.369 1.932 0.668
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