66 research outputs found

    Salivary signatures of oral-brain communication in sleep bruxers

    Get PDF
    IntroductionMicrobiota and their interaction with hosts have been of great interest in brain research in recent years. However, the role of oral microbiota in mental illness and the underlying mechanism of oral-brain communication remains elusive. Sleep bruxism (SB) is an oral parafunctional activity related to the nervous system and is considered a risk factor for harmful clinical consequences and severe systemic conditions. Exploring the connection between oral microbiota and sleep bruxism may deepen our understanding of the complex relationship between oral-brain axis and provide insights for treatment.MethodsIn this study, salivary samples were collected from 22 individuals with SB and 21 healthy controls, and metagenomics with metabolomics was performed. Nonparametric Wilcoxon test were applied for the statistical analysis between the two groups. Microbial dysbiosis and altered oral metabolites were found in the SB individuals.ResultsThe characteristic metabolite N-acetylglucosamine (GlcNAc) (VIP=8.4823, P<0.05) was correlated to a statistically lower Streptococcus mitis level in SB individuals. Salivary IFN-g level and IFN-g/IL-4 ratio were detected with significant changes in a chip assay. Amino acid metabolism pathways were upregulated, and the pathway with the largest number of differentially expressed genes is related to amino-tRNA charging pathway, while the most significantly enriched pathway is related to arginine biosynthesis. Neurotransmitter-associated pathways with glutamatergic and GABAergic synapses and cardiovascular system-related pathways were enriched in the SB group.DiscussionThese results indicate a possible neuroimmune regulatory network of oral-brain communication in SB, which helps explain the mechanism of the oral microbiome with the host in sleep bruxers and provides a reference for early clinical and therapeutic intervention to improve the diagnosis and treatment of SB and similar diseases

    Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide.

    Get PDF
    Conversion of carbon monoxide to high value-added ethylene with high selectivity by traditional syngas conversion process is challenging because of the limitation of Anderson-Schulz-Flory distribution. Herein we report a direct electrocatalytic process for highly selective ethylene production from CO reduction with water over Cu catalysts at room temperature and ambient pressure. An unprecedented 52.7 % Faradaic efficiency of ethylene formation is achieved through optimization of cathode structure to facilitate CO diffusion at the surface of the electrode and Cu catalysts to enhance the C-C bond coupling. The highly selective ethylene production is almost without other carbon-based byproducts (e.g. C1 -C4 hydrocarbons and CO2 ) and avoids the drawbacks of the traditional Fischer-Tropsch process that always delivers undesired products. This study provides a new and promising strategy for highly selective production of ethylene from the abundant industrial CO

    COVID-19 causes record decline in global CO2 emissions

    Get PDF
    The considerable cessation of human activities during the COVID-19 pandemic has affected global energy use and CO2 emissions. Here we show the unprecedented decrease in global fossil CO2 emissions from January to April 2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when compared with the period last year. In addition other emerging estimates of COVID impacts based on monthly energy supply or estimated parameters, this study contributes to another step that constructed the near-real-time daily CO2 emission inventories based on activity from power generation (for 29 countries), industry (for 73 countries), road transportation (for 406 cities), aviation and maritime transportation and commercial and residential sectors emissions (for 206 countries). The estimates distinguished the decline of CO2 due to COVID-19 from the daily, weekly and seasonal variations as well as the holiday events. The COVID-related decreases in CO2 emissions in road transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to 2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%), residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2, -15%). Regionally, decreases in China were the largest and earliest (234.5 Mt CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S. (162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional nitrogen oxides concentrations observed by satellites and ground-based networks, but the calculated signal of emissions decreases (about 1Gt CO2) will have little impacts (less than 0.13ppm by April 30, 2020) on the overserved global CO2 concertation. However, with observed fast CO2 recovery in China and partial re-opening globally, our findings suggest the longer-term effects on CO2 emissions are unknown and should be carefully monitored using multiple measures

    Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation

    Get PDF
    ObjectiveBazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC.MethodsThe Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD’s active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an “herb-ingredient-target” network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer.ResultsBZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the “herb-ingredient-target” network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles.ConclusionBZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations

    Near-real-time monitoring of global CO₂ emissions reveals the effects of the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO₂) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO₂ emissions (−1551 Mt CO₂) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially

    Comparing the influence of green credit on commercial bank profitability in China and abroad: Empirical test based on a dynamic panel system using GMM

    No full text
    This study establishes a dynamic panel model for 12 Chinese-listed commercial banks and seven international commercial banks. More specifically, it examines the impact of green credit on the profitability of commercial banks and the differences between China and other countries while using the generalized method of moments. The research shows that the Equatorial Principles project-financing ratio of international banks positively affects bank profitability, while the ratio of green credit for Chinese commercial banks is inversely related to their profitability. Further, a comparative study of China and other countries highlights that the green credit business is at significantly different stages in China and the rest of the world. This study also finds that the profitability of China's banking sector is positively affected by asset size, management expense ratio, cash ratio, and GDP growth rate, in addition to the common influencing factor of non-performing loan ratio, whereas asset size and capital adequacy ratio negatively affects the international banking sector. Drawing on these empirical conclusions, this study offers suggestions for the further development of green credit in Chinese commercial banks

    Statistical Risk and Performance Analyses on Naturalistic Driving Trajectory Datasets for Traffic Modeling

    No full text
    The development of autonomous driving technology has made simulation testing one of the most important tools for evaluating system performance. However, there is a lack of systematic methods for analyzing and assessing naturalistic driving trajectory datasets. Specifically, there is a lack of comprehensive analyses on data diversity and balance in machine learning-oriented research. This study presents a comprehensive assessment of existing highway scenario datasets in the context of traffic modeling in autonomous driving simulation tests. In order to clarify the level of traffic risk, we design a systematic risk index and propose an index describing the degree of data scatter based on the principle of Euclidean distance quantization. By comparing several datasets, including NGSIM, highD, INTERACTION, CitySim, and our self-collected Highway dataset, we find that the proposed metrics can effectively quantify the risk level of the dataset while helping to gain insight into the diversity and balance differences of the dataset

    Increased expression of CD55 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma

    No full text
    Purpose: To analyze the expression of complement delay-accelerating factor (CD55) in nasopharyngeal carcinoma and its correlation with clinicopathologic features, including survival rate. Methods: Eighty-two nasopharyngeal carcinoma tissues were evaluated for CD55 expression using immunohistochemistry. The association between CD55 expression and various clinicopathological characteristics including overall survival was analyzed. Results: Immunohistochemical analysis revealed that the protein expression of CD55 detected in nasopharyngeal carcinoma tissues was higher than that in the normal nasopharyngeal tissue (P=0.003). In addition, high levels of CD55 protein were positively correlated with the status of lymph node metastasis (P=0.02) and distant metastasis (P=0.01), and clinical stage (P=0.002) of nasopharyngeal carcinoma patients. Patients with positive CD55 expression had a significantly shorter overall survival time than did patients with negative CD55 expression (P=0.001). Multivariate analysis suggested that the expression pattern of CD55 protein was an independent prognostic indicator (P=0.009) for the survival of patients with nasopharyngeal carcinoma. Conclusion: The data from this study suggest, for the first time, that CD55 is frequently expressed in nasopharyngeal carcinoma and its expression is associated with decreased patient survival; therefore, CD55 expression may be a potential unfavorable prognostic factor for patients with nasopharyngeal carcinoma
    • 

    corecore