14 research outputs found
Recommended from our members
Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming
Increasing soil organic carbon (SOC) in croplands by switching from conventional to conservation management may be hampered by stimulated microbial decomposition under warming. Here, we test the interactive effects of agricultural management and warming on SOC persistence and underlying microbial mechanisms in a decade-long controlled experiment on a wheat-maize cropping system. Warming increased SOC content and accelerated fungal community temporal turnover under conservation agriculture (no tillage, chopped crop residue), but not under conventional agriculture (annual tillage, crop residue removed). Microbial carbon use efficiency (CUE) and growth increased linearly over time, with stronger positive warming effects after 5 years under conservation agriculture. According to structural equation models, these increases arose from greater carbon inputs from the crops, which indirectly controlled microbial CUE via changes in fungal communities. As a result, fungal necromass increased from 28 to 53%, emerging as the strongest predictor of SOC content. Collectively, our results demonstrate how management and climatic factors can interact to alter microbial community composition, physiology and functions and, in turn, SOC formation and accrual in croplands.</p
Phonon thermal conductivity of a nanowire with amorphous structure
Thermal conductivity of a model nanowire, composed of Zr-Ti-Cu-Ni-Be amorphous alloy, has been studied by computer simulations and theoretical calculations. The results from the molecular dynamics simulations are compared to predictions from Fourier continuum mechanics theory, and with published experimental data. Analysis of the theoretical phonon thermal conductivity follows the previously published incoherent particle model. The novelty of this study is in the employment of amorphous structure, lacking any order or superlattice. The simulated thermal conductivity is significantly lower than that measured by experiments on bulk alloy. It appears that amorphous structure and side-wall scattering reduce thermal diffusivity significantly. Velocity auto correlation time constant increases during heating cycle in proportion to the ratio of atomic weight divided by atomic scattering cross-sectional area
Recommended from our members
Microbially mediated mechanisms underlie soil carbon accrual by conservation agriculture under decade-long warming.
Increasing soil organic carbon (SOC) in croplands by switching from conventional to conservation management may be hampered by stimulated microbial decomposition under warming. Here, we test the interactive effects of agricultural management and warming on SOC persistence and underlying microbial mechanisms in a decade-long controlled experiment on a wheat-maize cropping system. Warming increased SOC content and accelerated fungal community temporal turnover under conservation agriculture (no tillage, chopped crop residue), but not under conventional agriculture (annual tillage, crop residue removed). Microbial carbon use efficiency (CUE) and growth increased linearly over time, with stronger positive warming effects after 5 years under conservation agriculture. According to structural equation models, these increases arose from greater carbon inputs from the crops, which indirectly controlled microbial CUE via changes in fungal communities. As a result, fungal necromass increased from 28 to 53%, emerging as the strongest predictor of SOC content. Collectively, our results demonstrate how management and climatic factors can interact to alter microbial community composition, physiology and functions and, in turn, SOC formation and accrual in croplands
Chemical Reaction Spectrum
We proposed a new method of chemical reaction spectrum (CRS) in terms of chemical characterization, and established a method to fulfill it by combining with 3D chemical printing technology and 2D sampling. The CRS can provide a graphical data set for pure or mixed substances, which can comprehensively describe the reaction characteristics of the research object. Compared with common characterization methods (NMR, UV/vis, IR, Raman, GC or LC), it is more capable of revealing chemical behaviors enough, and is much lower in cost. It is expected to be an important data acquisition approach for the application of artificial intelligence in the field of chemistry in the future
Conservation agriculture improves soil health and sustains crop yields after long-term warming
12 páginas.- 5 figuras.- 89 referencias.- The online version contains Supplementary Material available at https://doi.org/10.1038/s41467-024-53169-6Climate warming threatens global food security by exacerbating pressures on degraded soils under intensive crop production. Conservation agriculture is promoted as a sustainable solution that improves soil health and sustains crop yields in a changing climate, but these benefits may be affected by long-term warming. Here, we investigate the effects of conservation agriculture compared to conventional agriculture on 17 soil properties, microbial diversity and crop yields, during eight-years’ experimental warming. An overall positive effect of warming on soil health over time under conservation agriculture is characterized by linear increases in soil organic carbon and microbial biomass carbon. Warming-triggered shifts in microbial biomass carbon and fungal diversity (saprogen richness) are directly linked to a 9.3% increase in wheat yields over eight years, but only under conservation agriculture. Overall, conservation agriculture results in an average 21% increase in soil health and supports similar levels of crop production after long-term warming compared to conventional agriculture. Our work provides insights into the potential benefits of conservation agriculture for long-term sustainable food production because improved soil health improves resilience to the effects of climate warming.This study was supported by the National Natural Science Foundation of China (grant nos. U23A20158, Z.L.C., and 32071629, J.T.), National Key R&D Program of China (2023YFD1901500, J.T.), 2115 Talent Development Program of China Agricultural University and Beijing Advanced Disciplines, F.S.Z., Z.L.C., J.B.Z., J.T., and the China Postdoctoral Science Foundation (2022M71339, J.L.T.).Peer reviewe
Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells
10.1007/s10856-013-5003-5Journal of Materials Science: Materials in Medicine24112577-2587JSMM