462 research outputs found
Mutual-Guided Dynamic Network for Image Fusion
Image fusion aims to generate a high-quality image from multiple images
captured under varying conditions. The key problem of this task is to preserve
complementary information while filtering out irrelevant information for the
fused result. However, existing methods address this problem by leveraging
static convolutional neural networks (CNNs), suffering two inherent limitations
during feature extraction, i.e., being unable to handle spatial-variant
contents and lacking guidance from multiple inputs. In this paper, we propose a
novel mutual-guided dynamic network (MGDN) for image fusion, which allows for
effective information utilization across different locations and inputs.
Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive
feature extraction, composed of a mutual-guided cross-attention (MGCA) module
and a dynamic filter predictor, where the former incorporates additional
guidance from different inputs and the latter generates spatial-variant kernels
for different locations. In addition, we introduce a parallel feature fusion
(PFF) module to effectively fuse local and global information of the extracted
features. To further reduce the redundancy among the extracted features while
simultaneously preserving their shared structural information, we devise a
novel loss function that combines the minimization of normalized mutual
information (NMI) with an estimated gradient mask. Experimental results on five
benchmark datasets demonstrate that our proposed method outperforms existing
methods on four image fusion tasks. The code and model are publicly available
at: https://github.com/Guanys-dar/MGDN.Comment: ACMMM 2023 accepte
Anti-site-induced diverse diluted magnetism in LiMgPdSb-type CoMnTiSi alloy
The effect of three kinds of anti-site disorder to electronic structure and magnetic properties of the LiMgPdSb-type CoMnTiSi alloy are investigated. It was found the Mn-Ti anti-site disorder can induce the diluted magnetism in CoMnTiSi matrix. The magnetic structure has an oscillation between the ferromagnetic and antiferromagnetic states with the different degree of Mn-Ti anti-site disorder. Two novel characteristics: the diluted antiferromagnetic half-metallicity and the diluted zero-gap half-metallity are found in the different degree range of the Mn-Ti anti-site disorder. The Co-Mn and Co-Ti anti-site disorder have little effect on the magnetic properties. The width of energy gap and the intensity of DOS at the Fermi level can be adjusted by the degree of Co-Mn or Co-Ti anti-site disorder. The independent control to the carrier concentration and magnetization can be realized by introducing the different anti-site disorder
Profound Presentation of Retinopathy in a Patient with Sickle Cell trait and Diabetes Mellitus
This is a Photo Essay and does not have an abstract
Guarding Embryo Development of Zebrafish by Shell Engineering: A Strategy to Shield Life from Ozone Depletion
Background: The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging midultraviolet radiation (UVB, 280 to 320 nm) reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. Methodology/Principal Findings: Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo) of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. Conclusions: We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research
Visualizing choriocapillaris using swept source optical coherence tomography angiography with various probe beam sizes
Imaging choriocapillaris (CC) is a long-term challenge for commercial OCT angiography (OCTA) systems due to limited transverse resolution. Effects of transverse resolution on the visualization of a CC microvascular network are explored and demonstrated in this paper. We use three probe beams with sizes of ~1.12 mm, ~2.51 mm and ~3.50 mm at the pupil plane, which deliver an estimated transverse resolution at the retina of 17.5 µm, 8.8 µm and 7.0 µm, respectively, to investigate the ability of OCTA to resolve the CC capillary vessels. The complex optical microangiography algorithm is applied to extract blood flow in the CC slab. Mean retinal pigment epithelium (RPE) to CC (RPE-CC) distance, mean CC inter-vascular spacing and the magnitude in the radially-averaged power spectrum are quantified. We demonstrate that a clearer CC lobular capillary network is resolved in the angiograms provided by a larger beam size. The image contrast of the CC angiogram with a large beam size of 3.50 mm is 114% higher than that with a small beam size of 1.12 mm. While the measurements of the mean RPE-CC distance and CC inter-vascular spacing are almost consistent regardless of the beam sizes, they are more reliable and stable with the larger beam size of 3.50 mm. We conclude that the beam size is a key parameter for CC angiography if the purpose of the investigation is to visualize the individual CC capillaries.</p
Fairness-aware Age-of-Information Minimization in WPT-Assisted Short-Packet THz Communications for mURLLC
The technological landscape is swiftly advancing towards large-scale systems,
creating significant opportunities, particularly in the domain of Terahertz
(THz) communications. Networks designed for massive connectivity, comprising
numerous Internet of Things (IoT) devices, are at the forefront of this
advancement. In this paper, we consider Wireless Power Transfer (WPT)-enabled
networks that support these IoT devices with massive Ultra-Reliable and
Low-Latency Communication (mURLLC) services.The focus of such networks is
information freshness, with the Age-of-Information (AoI) serving as the pivotal
performance metric. In particular, we aim to minimize the maximum AoI among IoT
devices by optimizing the scheduling policy. Our analytical findings establish
the convexity property of the problem, which can be solved efficiently.
Furthermore, we introduce the concept of AoI-oriented cluster capacity,
examining the relationship between the number of supported devices and the AoI
performance in the network. Numerical simulations validate the advantage of our
proposed approach in enhancing AoI performance, indicating its potential to
guide the design of future THz communication systems for IoT applications
requiring mURLLC services
- …