1,449 research outputs found

    LW-CMDANet:a novel attention network for SAR automatic target recognition

    Get PDF

    Two halosesquiterpenes from Laurencia composita

    Get PDF
    Two new chamigrane sesquiterpenes, yicterpenes A (1) and B (2) each with an unprecedented halogenation at C-9 and a hemiketal unit at C-10, were isolated from the marine red algaLaurencia composita. The structures and absolute configurations of them were identified by NMR, ECD, and mass spectrometric methods as well as quantum chemical calculations. Compound 1 with a chlorination at C-9 was more active against some tested marine-derived organisms than 2 with a bromination at C-9.  Two new chamigrane sesquiterpenes, yicterpenes A (1) and B (2) each with an unprecedented halogenation at C-9 and a hemiketal unit at C-10, were isolated from the marine red alga Laurencia composita. The structures and absolute configurations of them were identified by NMR, ECD, and mass spectrometric methods as well as quantum chemical calculations. Compound 1 with a chlorination at C-9 was more active against some tested marine-derived organisms than 2 with a bromination at C-9

    Coupling of light from an optical fiber taper into silver nanowires

    Full text link
    We report the coupling of photons from an optical fiber taper to surface plasmon modes of silver nanowires. The launch of propagating plasmons can be realized not only at ends of the nanowires, but also at the midsection. The degree of the coupling can be controlled by adjusting the light polarization. In addition, we present the coupling of light into multiple nanowires from a single optical fiber taper simultaneously. Our demonstration offers a novel method for optimizing plasmon coupling into nanoscale metallic waveguides and promotes the realization of highly integrated plasmonic devices.Comment: 5 pages, 4 figure

    Thermo-Responsive Molecularly Imprinted Hydrogels for Selective Adsorption and Controlled Release of Phenol From Aqueous Solution

    Get PDF
    In this study, thermo-responsive molecularly imprinted hydrogels (T-MIHs) were developed as an effective potential adsorbent for selectively adsorption phenol from wastewater. During the process, N-isopropyl acrylamide (NIPAm) was used as thermal responsive monomer. The obtained materials were characterized in detail by fourier transform infrared (FT-IR) spectrometer, scanning electron microscope (SEM), and thermo gravimetric analysis (TGA). A series of static adsorption studies were performed to investigate the kinetics, specific adsorption equilibrium, and selective recognition ability of phenol. Reversible adsorption and release of phenol were realized by changing temperatures. Three type of phenols, namely 3-chlorophenols (3-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) were selected as model analytes to evaluate the selective recognition performance of T-MIHs. The T-MIHs have good selectivity, temperature response, and reusability, making them ideal in applying in the controlled separation and release of phenol pollutants

    Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution

    Full text link
    In this paper, the effect of the intrinsic distribution of cosmological candles is investigated. We find that, in the case of a narrow distribution, the deviation of the observed modulus of sources from the expected central value could be estimated within a ceratin range. We thus introduce a lower and upper limits of χ2\chi ^{2}, χmin2\chi_{\min}^{2} and χmax2 \chi_{\max}^{2}, to estimate cosmological parameters by applying the conventional minimizing χ2\chi ^{2} method. We apply this method to a gamma-ray burst (GRB) sample as well as to a combined sample including this GRB sample and an SN Ia sample. Our analysis shows that: a) in the case of assuming an intrinsic distribution of candles of the GRB sample, the effect of the distribution is obvious and should not be neglected; b) taking into account this effect would lead to a poorer constraint of the cosmological parameter ranges. The analysis suggests that in the attempt of constraining the cosmological model with current GRB samples, the results tend to be worse than what previously thought if the mentioned intrinsic distribution does exist.Comment: 6 pages,4 figures,1 tables.Data updated. Main conclusion unchange

    Annual 30-m big Lake Maps of the Tibetan Plateau in 1991–2018

    Get PDF
    Lake systems on the Tibetan Plateau (TP) are important for the supply and storage of fresh water to billions of people. However, previous studies on the dynamics of these lakes focused on monitoring on multi-year scales and therefore lack sufficient temporal information. Here we present a new dataset comprising annual maps of big lakes (>10 km2) on the TP for 1991–2018, generated by utilizing all available Landsat images in conjunction with Google Earth Engine. The annual lake maps with high overall accuracy (~96%) highlight distinctive lake distribution and lake changes: (1) about 70% number and area of lakes concentrated in the Inner basin; (2) generally increasing trends in both the area (by 33%) and number (by 30%) of lakes from 1991 to 2018; (3) the total area changes were dominated by larger lakes (>50 km2) while more fluctuations in the lake number changes were found in medium lakes (10−50 km2). Our dataset infills temporal gaps in long-term inter-annual variations of big lakes, contributing towards enhanced knowledge of TP lake systems

    Crystallization and preliminary X-ray diffraction studies of UP1, the two-RRM domain of hnRNP A1

    Get PDF
    Abstract The N-terminal domain of hnRNP A1 protein, termed UP1, comprises two tandem RNA-recognition motifs, both of which are necessary for efficient RNA binding and for the alternative splicing activity of hnRNP A1. Recombinant human UPI expressed in E. coli has been crystallized in space group P2~ with unit-cell dimensions a=37.94, b = 43.98, c = 55.64 A, and 13 = 93.9 °. The unit-cell volume is consistent with one UP1 molecule per asymmetric unit and a calculated 49% solvent content. The crystal diffraction limit is higher than 1.3A, and a data set to 2.0A, has been collected. Diffraction data from one platinum and two mercury derivatives have also been collected

    Neuropathologic damage induced by radiofrequency ablation at different temperatures

    Get PDF
    Objective: To explore the molecular mechanism of neuropathologic damage induced by radiofrequency ablation at different temperatures. Methods: This is basic research, and 36 SD rats were used to construct the neuropathological injury model. The rats were subjected to radiofrequency stimulation at different temperatures and were divided into 6 groups according to the temperature injury: 42°, 47°, 52°, 57°, 62°, and 67°C groups. Conduction time, conduction distance, and nerve conduction velocity were recorded after temperature injury. HE-staining was used to observe the histopathological morphology of the sciatic nerve. The expression of SCN9A, SCN3B, and NFASC protein in sciatic nerve tissue were detected by western blot. Results: With the increase in temperature, nerve conduction velocity gradually decreased, and neurons were damaged when the temperature was 67°C. HE-staining showed that the degrees of degeneration of neurons in rats at 47°, 52°, 57°, 62°, and 67°C were gradually increased. The expression of SCN9A, SCN3B protein in 57°, 62°, 67°C groups were much higher than that of NC, 42°, 47°, 52°C groups. However, the expression of NFASC protein in 57°, 62°, 67°C groups was much lower than that of the NC, 42°, 47°, 52°C groups. Conclusion: There was a positive correlation between temperature caused by the radiofrequency stimulation to neuropathological damage. The mechanism is closely related to the expression of SCN9A, SCN3B, and NFASC protein in nerve tissue caused by heat transfer injury
    corecore