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LW-CMDANet: A Novel Attention Network for SAR
Automatic Target Recognition

Ping Lang

Abstract—Deep-learning-based synthetic aperture radar auto-
matic target recognition (SAR-ATR) plays a significant role in
the military and civilian fields. However, data limitation and large
computational cost are still severe challenges in the actual appli-
cation of SAR-ATR. To improve the performance of the convo-
lutional neural network (CNN) model with limited data samples
in SAR-ATR, this article proposes a novel multidomain feature
subspace fusion representation learning method, i.e., a lightweight
cascaded multidomain attention network, namely, LW-CMDA Net.
First, we design a four-layer CNN model to perform hierarchical
feature representation learning via the hinge loss function, which
can efficiently alleviate the overfitting problem of the CNN model
by a nongreedy training style with a small dataset. Then, a cascaded
multidomain attention module, based on discrete cosine transform
and discrete wavelet transform, is embedded into the previous
CNN to further complete the class-specific feature extraction from
both the frequency and wavelet transform domains of the input
feature maps. Thus, the multidomain attention can enhance the
feature extraction ability of previous nongreedy learning manner,
to effectively improve the recognition accuracy of the CNN model.
Experimental results on small SAR datasets show that our pro-
posed method can achieve better or competitive performance than
that of many current existing state-of-the-art methods in terms of
recognition accuracy and computational cost.

Index Terms—Discrete cosine transform (DCT), multidomain
attention, synthetic aperture radar automatic target recognition
(SAR-ATR), wavelet transform.

1. INTRODUCTION

PERATING in all weather, day-and-night, and high-
O resolution imaging, a synthetic aperture radar (SAR) plays
an increasingly important role in the fields of military and
civilian applications, such as surveillance and reconnaissance
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tasks. Synthetic aperture radar automatic target recognition
(SAR-ATR) is one of the significant SAR imagery interpretation
tasks [1], which is used to predict the specific category of de-
tected targets (such as military vehicles [2], [3] and terrains [4])
through obtained SAR imagery data with computer processing
technology. In recent years, with the rapid development of the
deep learning (DL) technique, SAR-ATR has achieved a great
success. However, the heavy dependence on the large-scale
dataset and the large computational cost of the DL. model are still
main challenges when DL-based SAR-ATR methods are applied
in practical scenarios. The main reasons are as follows: 1) the
scatter characteristics of the SAR target are highly sensitive to
imaging conditions, such as different azimuth and pose angles
of the target; 2) it is obviously expensive and time consuming to
acquire and annotate a large number of SAR target images; and
3) the good DL model usually has a large number of parameters
and needs large computational cost to be trained before the
model reaches convergence.

To address the above issues of SAR-ATR, many researchers
have proposed some state-of-the-art (SOTA) methods in recent
years, which mainly contain three categories: data augmentation
based (e.g., simulated SAR images [5], [6], data augmentation
techniques [7], and extra SAR data sample generalization [8],
[9]), transfer learning or prior knowledge based (e.g., pretrained
techniques [10], [11] and related SAR imaging prior informa-
tion [5], [6], [17]-[20]), and the fine-grained model structure
design or novel learning techniques based (e.g., M-Net [22],
multifeature fusion learning [29], [30], [32], and metalearn-
ing [33]-[35]).

As for the data augmentation technique, the authors aug-
mented the SAR dataset by simulated SAR images in [5],
[6], and [33]. In [7], three image processing techniques (i.e.,
translation, speckle noising, and pose synthesis) were proposed
to augment the SAR dataset. Huang et al. [8] and Song et al. [9]
proposed the deep Q-learning and the adversarial autoencoder
model to generate extra SAR data samples to enhance the
generalization of the DL model, respectively.

As for the transfer learning, the authors in [5], [6], and [33]
proposed that the DL model could first learn the physical-related
features from the simulated SAR images and then transferred
learned prior knowledge into the real SAR images recognition
task to improve the generalization ability of the DL model.
Huang et al. [10] and Ying et al. [11] first performed the pre-
training technique on unlabeled SAR images or optical images to
acquire prior knowledge and then transferred learned knowledge
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to the real SAR-ATR task. Moreover, the domain knowledge of
SAR imaging (such as range/azimuth angle information [12],
[16], attributed scattering center features [17]-[21], and multi-
scale rotation invariant Haar-like features of SAR images [30])
and the extracted features by the DL model are fused to effec-
tively and efficiently alleviate the overfitting at the limited data
scenarios.

As for the fine-grained model structure design or the novel
learning technique, many novel models are proposed to im-
prove the features extraction ability of the DL models, such
as memory network [22], model compression technique [23],
A-ConvNet [24], hybrid inference network [25], novel loss
functions [26]—[28], multichannel parallel topology [29], and
multiscale prototypical network [31]. The pose angle marginal-
ization learning and the target aspect angle sharing learning be-
tween source and target domains were also proposed to improve
the recognition performance of the DL model in [13]-[15]. In
addition, multiview feature fusion learning [32], metalearning
methods [33]-[35], contrastive learning [36], [37], and semisu-
pervised or self-supervised learning [15], [38] were also studied
to address the few-sample problem in SAR-ATR tasks.

Although these methods have made a great progress in afore-
mentioned SAR-ATR, they may still exist some challenges in
actual SAR-ATR scenarios. The data-augmentation-based meth-
ods directly increase the number of training data samples, which
can obviously improve the generalization of the DL. model. The
training process, however, needs more computational cost to
train the model before reaching the convergence. The transfer-
learning- or prior-knowledge-based methods can provide the
interpretability of the DL process to some extent, since the prior
knowledge of SAR imaging has been embedded into the learning
process. However, the requirement of a large pretrained SAR
dataset for the transfer learning is a severe challenge. In addition,
it is difficult to extract the complete prior knowledge of the SAR
images due to the complexity of the SAR imaging, especially at
limited data scenarios. As for the fine-grained model structure
design or novel learning-technique-based methods, this type of
methods can directly improve the recognition performance of the
DL model. However, these recognition methods are complex,
which is difficult to design an effective recognition model in
a short time. For example, the model compression technique
usually needs many experiments to determine the optimal scale
of model pruning. Metalearning methods need to construct a
large-scale metadataset to effectively train the model.

Inspired by the attention mechanism (AM) [44], [45] and
the wavelet transform [51], we propose a novel end-to-end
multidomain feature subspace fusion representation learning
network to directly improve the recognition accuracy and reduce
computational cost at limited data scenarios in this article. More
specifically, an end-to-end lightweight network architecture
based on a cascade multidomain attention (i.e., LW-CMDANet)
is proposed, which is a four-layer lightweight nongreedy HL-
convolutional neural network (CNN) model with the hinge
loss function based on our previous work [39]. The HL-CNN
model can perform hierarchical feature representation learning
via the hinge loss function in a nongreedy manner. Thus, it
can efficiently alleviate the overfitting problem by a nongreedy
training style with the limited dataset. More importantly, a novel
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cascaded multidomain attention module, based on the discrete
cosine transform (DCT) and the discrete wavelet transform
(DWT), is proposed to be embedded into the HL-CNN archi-
tecture to further complete the class-specific feature extraction
from both the frequency and wavelet transform domains of the
input feature maps during the training process.

The multifrequency spectrum features and the multiresolution
spectrum features of input feature maps obtained by the DCT
and the DWT, respectively, can increase the number of feature
subspaces of the input feature maps, which can provide the CNN
model (i.e., HL-CNN) with higher probability to extract effective
generalized (i.e., class-specific) features. The more the general-
ized features extracted, the better the generalization of the model.
In this way, the model can learn more different-level features
from the small dataset. In other words, this way can adaptively
increase the number of feature subspaces of the feature maps
by embedding a cascaded multidomain attention module during
the training process, instead of directly augmenting the training
data samples, such as [5], [6], and [33].

Moreover, multiresolution spectrum decomposition via the
DWT can reduce the size of the feature maps by downsampling.
In this way, multidomain feature subspaces (spatial features per-
formed by the convolution operation, DCT, and DWT, frequency
features performed by the DCT, and wavelet transform features
performed by the DWT) can enrich the feature learning space of
the HL-CNN to further improve the feature extraction capacity
with small data samples. At the same time, the multidomain fea-
ture maps can effectively compensate for the feature extraction
deficiency caused by the nongreedy learning of the HL-CNN.
In addition, a depthwise separable convolution block [40] is
adopted to replace the traditional convolution to reduce the
computational burden. The overview of the LW-CMDANet is
shown in Fig. 1.

The main contributions and novelties of this article can be
summarized as follows.

1) We propose a novel multidomain feature subspace fusion
representation learning architecture, which can adaptively
fuse spatial features, frequency features, and wavelet
transform features to improve the generalized feature ex-
traction capacity of the HL-CNN to enhance the recogni-
tion accuracy with small samples in SAR-ATR scenarios.

2) A lightweight nongreedy HL-CNN is developed to im-
prove the generalization performance of the deep CNN
and reduce the computational cost.

3) A novel multidomain attention module based on the DCT
and the DWT is proposed to perform the frequency trans-
form and the waveform transform of input feature maps,
which can increase extra two feature representation learn-
ing subspaces of input feature maps, i.e., frequency and
wavelet transform spectrum subspaces, respectively. In
this way, the model can adaptively improve multidomain
feature subspace fusion representation learning in an end-
to-end manner to enhance the SAR-ATR performance.

The rest of this article is organized as follows. Section II
briefly introduces related works. The methodology of our pro-
posed method is presented in Section III. Section IV describes
the experiment and result analyses, as well as discussion. Finally,
Section V concludes this article.
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Fig. 1. Overview of the proposed LW-CMDANet architecture.

II. RELATED WORKS
A. AM in CNNs

Inspired by the human brain visual processing system [41],
the AM can effectively improve the information processing ef-
ficiency. The AM can adaptively concentrate on important input
information and neglect or less focus on other input information.
Inrecent years, the AM has achieved a great success in DL-based
computer vision (CV) [44] and natural language processing [42],
mainly including spatial attention [43], channel attention [44],
frequency channel attention [45], mixture attention of spatial
and channel [46], nonlocal attention [47], class attention, and
temporal attention [50].

Wang et al. [43] developed a spatial attention to enhance the
significant spatial feature extraction of the DL model in the
image classification tasks. Hu et al. [44] proposed a channel at-
tention, i.e., squeeze-and-excitation network (SENet), to extract
channelwise feature maps by squeeze [i.e., global average pool-
ing (GAP)] and excitation (i.e., feature learning by multilayer
perceptron) operations. The SENet can adaptively recalibrate
the channelwise feature representation to weight the channel
relationship, which can further bring a significant improvement
in recognition performance with only slight additional compu-
tational cost. From a different perspective, based on the work
of [44], Qin et al. [45] proposed a frequency channel attention
block embedded in the CNN, i.e., FCANet, to efficiently extract
the frequency-domain features of the channel feature map by
the DCT. The experimental results show that the FCANet could
improve by 1.8% in terms of the top-one accuracy on ImageNet,
compared with the SENet.

Woo et al. [46] developed a mixture attention block, namely,
convolutional block attention module (CBAM), which com-
bined channel attention and spatial attention to comprehensively
extract the effective input feature maps. In order to reduce the
dependence on external information, Wang et al. [47] proposed
a nonlocal AM in the CNN architecture to compute the re-
sponse at a certain position as the weighted sum of all the
location features. In recent two years, the self-attention-based
transformer structure [42] has achieved a great success in the
CV domain [48], [49]. In addition, Yuan et al. [SO] proposed a
class-specific attention module in the CNN architecture applied
in image segmentation.

However, current existing attention modules aforementioned
are usually effective in the large-scale dataset scenarios. More-
over, these attentions usually focus on a single feature subspace,
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e.g., the SENet focuses on the channel feature subspace and
the FCANet performs on the frequency feature subspace. In the
practical small dataset scenario, these attention-based methods
maybe not work well (e.g., the limited feature learning capacity)
due to the degradation of the available feature learning space
during the training process, which is verified in Section IV (i.e.,
experiments and results).

B. Wavelet Transform in CNNs

The wavelet-transform-based multiresolution spectrum anal-
ysis of the image is good at extracting scale-invariant fea-
tures [51], which is potential to embed the wavelet transform
into the CNN model to effectively capture the spectral and
spatial features simultaneously with an end-to-end architecture.
Fujieda et al. [52] proposed a novel wavelet CNN model to effi-
ciently perform the multiresolution spectrum and spatial feature
extraction of the input image simultaneously during the training
process. In order to perform a better tradeoff between the size of
receptive field and the computational cost, Liu et al. [53] devel-
oped a multilevel wavelet CNN model to increase the receptive
field of the convolutional filters and reduce the resolution of the
feature maps. In addition, our previous works in [54] proposed a
trainable wavelet soft threshold denoising module into the CNN
to perform the noisy SAR image target recognition.

Inspired by the attention-based methods and the wavelet de-
composition, we proposed a novel multidomain feature subspace
fusion representation learning network, i.e., LW-CMDANet,
to perform the multidomain feature subspace learning with
the small dataset. More specifically, the multidomain feature
subspaces of our proposed method contain the spatial feature
subspace by the convolutional filters, the DCT, and the DWT,
the multispectrum feature subspace by the DCT, and the wavelet
decomposition subspace by the DWT. Therefore, the multido-
main feature subspace fusion representation learning of the input
SAR image can be achieved via an end-to-end CNN model
during the training process. Our proposed method can address
the problem of the current existing attention-based methods at
the aforementioned limited data scenarios.

III. METHODOLOGY

In this section, we present the methodology of our proposed
method (LW-CMDANet) in detail. First, the problem formula-
tion and the methodology of SAR-ATR are presented. Then, the
cascaded multidomain attention module is introduced, including
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multispectrum attention and multiresolution spectrum attention.
The depthwise separable convolution block and the functional
model description of the LW-CMDANet are introduced. Finally,
the proposed network model is presented.

A. Problem Formulation and Methodology

In this article, we consider that the SAR-ATR is performed
at the limited data scenarios, which is the actual situation in
military and civilian application domains. More importantly, it
is often difficult to collect a large amount of data due to the
military or commercial secrets and SAR imaging characteristics,
such as the sensitivity of the observation angle and the complex
scatter characteristics. Thus, the small feature space of limited
data usually leads to overfitting of the DL model. In addition, it
is difficult to train a DL model with a large number of parameters
in a short time (i.e., large computational complexity). Aiming
to address above problems, we propose a novel end-to-end DL-
based SAR-ATR model (i.e., LW-CMDANet).

More specifically, in order to improve the generalization
ability of the LW-CMDANet or alleviate the overfitting and
reduce the computational cost, we mainly make contributions in
the following three aspects (i.e., dataset preprocessing, network
design, and model training style).

1) In order to maximally reduce the influence of the land
clutter, we slice every sample of the MSTAR dataset into
the size of 40 x 40 centered on the target;

2) We design a lightweight CNN model based on the depth-
wise separable convolution and the multidomain AM.
The parameters of the model can be greatly reduced by
the depthwise separable convolution operation. At the
same time, the multidomain feature subspace (i.e., spa-
tial, frequency, and wavelet transform domains) fusion
representation learning of the input SAR images can be
simultaneously performed to improve recognition accu-
racy during the training process.

3) We adopt the hinge loss function to perform nongreedy
training to alleviate the overfitting of the DL model.

B. Cascaded Multidomain Attention

1) From DCT to Multispectrum Attention: Hu et al. [44]
proposed a channel attention, i.e., SE module, which consists of
squeeze and excitation operations. Suppose that X € RH*WxC
is the input feature map of a convolutional layer, and H, W, and
C are the height, the width, and the number of channels of the
feature map, respectively. X first performs the squeeze operation
(i.e., GAP) to generate a channelwise descriptor z € R® by
aggregating the feature maps across the spatial dimensions, i.e.,
H x W, for each channel of X. Then, the excitation operation
is used to reduce a set of channelwise weights by a self-gating
mechanism with a sigmoid activation function. Therefore, the
SE AM is given by

att = sigmoid( f.(GAP(X))) (1)

where att € RC is the attention vector, i.e., weight vector,
sigmoid is the sigmoid activation function, used to generate a
scalar ranging from 0 to 1, f.(.) is a feature mapping operation,
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(©)

Fig.2. 2-D DCT of the SAR image. (a) Original. (b) DCT (main components
at the upper-left corner). (c¢) Local zoom of the upper-left corner of (b).

such as a fully connected (FC) layer, and GAP is the GAP
operation. The weight vector is applied to the corresponding
feature map of X with a channelwise multiplication operation,
which yields the output of the SE module by

Y...i=att;X...;, sti€{0,1,...C—1} (2

------

where Y is the output of the SE module, att; is the ith element
of the weight vector, and X. . . ; is the ¢th channel feature of the
input X.

According to the detailed theoretical analysis of [45], the GAP
operation of the SE module is a special case of the 2-D DCT, i.e.,
the low-frequency component of the 2-D DWT is proportional
to GAP. The 2-D DCT of an image X € R”*W can be written
as

sthe{0,1,...H-1}we{0,1,...W—1} (3

where f2¢ ¢ R”*W is the 2-D DCT frequency spectrum of
an image = and H and W are the height and the width of =z,
respectively. A 2-D DCT example of an SAR image is shown in
Fig. 2.
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When h =0,w =0, i.e., fOQ_%
ponent, which can be written as

(o) (002)

is the lowest frequency com-

H-1W-1

B0=2 > i

=0 j=0

H—

—

W-1
2d
;5

i=0 j=0

= GAP(z*1)HW. 4)

<.

From (4), it can be seen that f2¢ is proportional to the GAP
operation, i.e., the GAP is only a special case of the frequency
components of the 2-D DCT. Therefore, it is prospective to
incorporate other frequency components to extend the feature
subspaces of the existing SE module.

According to (3), the inverse 2-D DCT can be written as

()

H-1W-1

=2 > 7

h=0 w=0

w1
cos W J 5
stief0,1,...H—1},j€{0,1,...W—1}. (5

For simplicity, we use A to represent the basis case of the
inverse 2-D DCT in (5) by

Ly P LN
A —COS(H (z—i— 2>>COS(W <]—|— 2)) (6)

Then, an image X can be written as
H-1W-1
X = (f GAGD + [0 1A +
=0 j=
+f121?d71,W71A%j—1,W71)' (7
According to (4), (7) can also be written as

H-1W-1

X = Z (GAP(X

i=0 j=0

VHW)AGh + f35A0% +

+f12{d—1,W—1A21j—1,W—1)- ®)

According to (1) and (8), it is natural to see that the existing
SE channel attention can be generalized to produce a novel
multispectrum attention by incorporating the multiple frequency
components of the 2D DCT.

More concretely, the feature map X € RT*W>C s first
divided into n subparts along with the channel dimension. We
denote these parts as [X0, X1 ... X"1], X ¢ REXWxC"
and C' = % For each part, a suitable corresponding 2-D DCT
frequency component is assigned, which can be written as

H-1W-1
=D 2 XonwAil
h=0 w=0
st.i€{0,1,....,n—1} 9)

where ffw € RY is the frequency component corresponding
to X ¢, whose index is [u, v]. The whole multispectrum attention
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Overview of the multispectrum attention module.
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vector can be concatenated as

F=cat([f° f',.... /")

where F' € RC. Therefore, according to (1), the multispectrum
attention structure can be written as

(10)

(an

We can see from (10) and (11) that the multispectrum attention
can incorporate extra frequency components into the feature map
X € RHT*WxC linstead of containing only the lowest frequency
component, such as the GAP operation. The overall illustration
of the multispectrum attention is shown in Fig. 3.

2) From the DWT to Multiresolution Spectrum Attention: In
order to fully exploit the multiscale decomposition features of
the input feature maps, we proposed a novel multiresolution
spectrum attention module to perform the multiresolution anal-
ysis based on the DWT [51].

An image can be decomposed into four subband images by
the 2-D DWT with four convolutional filters, i.e., low-pass filter
frr and high-pass filters frpy, frr, and frpg. We take Haar
wavelet as an example, the four convolutional filters are defined

as
e e

-11 1 -1
oL = [_1 1} yfum = {_1 1 ] :
These filters are orthogonal to each other. Given an image z,

the four subband components of x by the decomposition of the
2-D DWT are defined as

rrrn = (fro ®@x)lo, 2o = (foag @ x)l2
v = (fur @x)le, 2uyn = (fug ® x)ls

where ® represents the convolutional operation, |5 represents
a downsampling operation with a factor of 2. More concretely,
the (¢, 7)th value of x1,1,, i, g1, and x g i of the 2-D Haar
DWT can be mathematically expressed as

(i, §) =2(2i — 1,25 — 1)+2(2i — 1,27)
+2(2i,25 — 1) +x(2i,25)
—2(20—1,2) — 1)—x(2i — 1,2j)
+2(2i,25 — 1)+x(2i,25)

attMulSpectral = SlngId(fC(F))

12)

13)

(ELH(%J) =
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d (e)

Fig. 4.
(OFF3:8

DWT of the SAR image. (a) Original. (b) . (¢c) zpg. (d) x g,

eL(i,g) = — 2(2i — 1,2 — 1)+ (2i — 1,2j)
— (26,25 — 1)+a(2i,27)
wrn(i,j) =o(2i — 1,2 — 1)—2(2i — 1,2j)

—x(21,25 — 1)+x(21, 25). (14)

We take the 2-D DWT of an SAR image as an example; the
four decomposition components are shown in Fig. 4.

Inspired by the channel attention [44], we extend the channel
attention to the multiresolution spectrum attention in this arti-
cle, which can efficiently extract features from the 2-D DWT
domain. In general, the high-frequency component of an image,
i.e., T p, 1s the noisy component. In order to alleviate the nega-
tive impact of the noisy component on SAR-ATR tasks, we quit
the x ;7 7 component of the feature maps and consider xr 1, x5,
and x p7 1, during the training process. More concretely, the input
feature maps of the DWT, denoted as F ¢ RHXWXC are first
divided into three subparts along with the channel dimension. We
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denote these parts as [F0, F'!, F?], ' € RE>W>C O = [<]
([x] represents that the maximum integer is not more than x).
Since “3” is an odd number, the number of channels in the
features maps is 2", i.e., an even number. Therefore, we there
make a specific treatment to assign the number of channels: the
number of channels of F© and F'! is the maximum integer not
exceeding [%] and the remainder of channels are assigned to F'2.
For example, if the feature map F' has 64 channels, F9 and F!
have 21 channels, and F2 has 22 channels. Therefore, a suitable
corresponding 2-D DWT frequency component is assigned to
each part, which can be written as

v =F'® frr
vy =F'® fry

g =F?*® fur (15)

where xr1, xrp, and xgy are the low-frequency and high-
frequency components corresponding to F°, F', and F?, re-
spectively. Similar to the SE module, we use squeeze and exci-
tation operations to obtain the attention vector of feature map F
as

att; = sigmoid( fc(GAP(F"))) (16)

where att; € RIS, sigmoid is the sigmoid activation function to
generate a scalar ranging from O to 1, f¢(.) is a feature mapping
operation, such as an FC layer, and GAP is a GAP operation.
The whole multiresolution attention vector, also called weight
vector, can be concatenated as

attyireso = cat([att’ att', att?]) 17

where attyureso € RE. This weight vector is applied to the
corresponding feature maps of F via a channelwise multipli-
cation operation, which yields the output of the multiresolution
spectrum attention module by

Y...; = attyureso’ X F...4, st.i€{0,1,...,C —1} (18)

where Y is the output of the multiresolution spectrum attention
module, attyureso’ 18 the ith element of the weight vector, and
F...; is the ith channel feature of the input F. The overall
illustration of the multiresolution spectrum attention is similar
to the previous multispectrum attention, as shown in Fig. 3.

C. Depthwise Separable Convolution Block

Differently from a traditional convolution operation, i.e., a
one-step operation of both the filtering and feature combinations,
a depthwise separable convolution has a two-step operation: a
depthwise convolution and a 1 x 1 pointwise convolution to
substantially reduce the computational cost, which is illustrated
in Fig. 5 [40].

Assuming that a traditional convolution layer takes a fea-
ture map X € R7*WxC a5 input and yields a feature map
Y € RHXWXC 45 output, where C' and C” are the number
of input and output channels, respectively. The traditional con-
volution layer is parameterized by a convolution kernel K of
size k x k x C' x C’, where k is the spatial square dimension
of the convolution kernel and C' and C” are identically defined
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Fig. 5. Relationship between the standard convolution and the depthwise
separable convolution.

aforementioned. The output feature map Y of the traditional
convolution is computed by

Yiie = E K jeo Xptio1,0145-1,c

i,5,¢

19)

According to (19), the computational cost of the traditional
convolution depends on the kernel size, the number of the output
channels, and the size of the input feature map, which can be
calculated by

Cost=Fk-k-C-C'-H-W. (20)

As for the depthwise separable convolution, the first step is
the depthwise convolution operation, i.e., each input channel has
a filter to perform the channelwise convolution, which can be
computed by

! !/
Yiic= ZKi,j,chJriq,qu,c 21
,J
where K’ is the depthwise convolution kernel with the size of
k x k x C'. The computational cost of this operation can be
written as

COStdepthwise =k-k-C-H-W. (22)

Similarly, the computational cost of the 1 x 1 pointwise con-
volution can be written as

COStpoinlwise =C-C'"-H-W. (23)

The sum of the computational cost of depthwise and pointwise
convolutions can be written as

Costym =k-k-C-H-W+C-C'-H-W. (24)

Compared to the traditional convolution operation, the re-
duction of the computational cost of the depthwise separable
convolution is computed by

k-k-C-H-W+C-C'"-H-W

Ratio = Kk C O H-W
1 1

According to (25), the depthwise separable convolution can
dramatically reduce the computational cost. For example, the
depthwise separable convolution can achieve eight to nine times
less computational cost when using 3 x 3 convolution kernel,
compared with the traditional convolution.
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D. Model Description

The proposed LW-CMDANet consists of two traditional con-
volution blocks, a cascaded multidomain attention module, and
two FC layers. The cascaded multidomain attention module
includes a multispectrum attention block, a multiresolution spec-
trum attention block, and a lightweight convolution module
(consists of two depthwise separable convolution blocks). In
addition, we use the hinge loss function as a classifier. The
overview of the LW-CMDANet is shown in Fig. 1.

The model first extracts the low-level spatial features of the
input SAR image via the traditional convolution layer, such
as contexture and edge features. The multispectrum attention
is, then, used to improve frequency-domain feature extraction
capability by the 2-D DCT of feature maps. In order to re-
duce the parameters of the traditional convolution operation,
we introduce two lightweight depthwise separable convolu-
tion blocks [40] to perform feature extraction, which can be
used to replace the traditional convolution layer to alleviate
the overfitting problem. However, the 2-D DCT is a global
frequency spectral transform, and it is difficult to perform local
detailed information analysis. In order to take advantage of the
multiresolution detailed information analysis of feature maps,
we propose a multiresolution spectrum attention module by the
2-D DWT, followed by the previous lightweight convolution
block, to efficiently perform multiresolution spectrum feature
extraction. The multiresolution spectrum attention module is
followed by a traditional convolution layer and two FC layers to
extract high-level features and form a feature vector. In addition,
we propose a nongreedy training manner via the hinge loss
function as a classifier to alleviate the overfitting.

E. Network Architecture

The network architecture of the LW-CMDANet is illustrated
in Fig. 6. More concretely, each standard convolutional layer
block contains a 64-filter with 3 x 3 convolutional kernel, a
rectified linear unit (ReLU) activation function, and a batch
normalization (BN) layer. In addition, each convolution layer is
followed by a 2 x 2 max-pooling layer. Two FC layers include
128- and 10-D outputs, respectively. The cascaded multidomain
attention module will be introduced in detail as follows.

1) Multispectrum Attention Module: The multispectrum at-
tention module consists of multigroup feature maps along with
the channel dimension, 2-D DCT-based selection, groupwise
2-D DCT, two FC layers (including 16 and 64 output channels,
respectively), a ReLU, and a sigmoid activation, as shown in
the multispectrum attention module of Fig. 6. This module can
adaptively assign a learning scale (i.e., weight) value to each
output channel of the second convolution block. This propor-
tional value is used to weight the importance of the channelwise
features, which is ranging from O to 1 and controlled by the
sigmoid activation.

In order to alleviate the computational cost, we select main
four frequency spectrum components to construct the multi-
spectrum attention along with the channel dimension of the
feature maps. Therefore, we first split the 64-channel feature
maps into four groups (denoted by X°, X!, X2 and X3,
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Fig. 6. Network architecture of the LW-CMDANet.

respectively) along with the channel dimension, each of which
has 16 channels. From the 2-D DCT of an SAR image, the main
frequency components are mainly focused on the upper-left part
of the frequency component matrix, as shown in Fig. 2. It is
expensive to test all the frequency component combinations
to determine the selection of frequency components. Simplis-
tically, we choose four main frequency components closest to
the upper-left corner, i.e., the index is (0,0), (0,1), (1,0), and
(1,1), which corresponds to the four groups of the feature
map, respectively. According to (9), the 2D DCT frequency
components of the groupwise feature maps can be written as

H-1W-1
) _ 7 u,v
uv E X:,h,wAh,w
h=0 w=0

st [u, 0] € {0,1}, i € {0,1,2,3} (26)

where ffw € R!6 is the frequency component corresponding to
X%, and H and W are the height and the width of feature maps,
respectively.

2) Multiresolution Spectrum Attention Module: Similar
to the multispectrum attention module, the multiresolution
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spectrum attention module consists of multigroup feature maps
along with the channel dimension, the wavelet filter selection,
groupwise 2-D DWT, two FC layers (including 16 and 64 output
channels, respectively), a ReLU, and a sigmoid activation, as
shown in the multispectrum attention module of Fig. 6.

In order to reduce the computational burden, we adopt the
first-level 2-D DWT, which has four filters to obtain three main
frequency components, i.e., 1.1, Trm, and x g1, respectively.
We first split the last 64-channel feature maps into three groups
along with the channel dimension, denoted by X, X!, and
X2 ([X% X1] € R* and X? € R??), respectively. We select
Haar wavelet base to perform the 2-D DWT of the input feature
maps, as illustrated in (12), i.e., frr, frm, and fgr. According
to (15)—(18), we can obtain the output of the multiresolution
spectrum attention module, illustrated as follows:

Y;,;’;’i = attMulResoi X X;);}:’i, s.t.i € {0, 1,..., 63} 27

3) Depthwise Separable Convolution Block: In order to re-
duce the model parameters to alleviate the overfitting problem,
we adopt two identical depthwise separable convolution blocks
between the multispectrum attention module and the multireso-
lution spectrum attention module, as illustrated in Fig. 6. Each
depthwise separable convolution block consists of three convo-
lution layers: the first one contains a 64-filter with 1 x 1 convo-
lutional kernel, a ReLLU activation function, and a BN layer; the
second one contains a 64-filter with 3 x 3 convolutional kernel,
a ReLU activation function, and a BN layer; and the third one
includes a 64-filter with 1 x 1 convolutional kernel and a BN
layer.

IV. EXPERIMENTS AND RESULTS

In this section, the detailed experimental design and the results
analysis are provided and compared. In order to better compare
with the existing SOTA methods, we evaluate our proposed
method by four small datasets from the MSTAR dataset [3].
The MSTAR dataset is widely used to verify the effectiveness
of the existing SAR-ATR methods. The experimental results
are compared with some existing SOTA methods, such as A-
convNet [24], FCANet [45], SENet [44], and CBAMNet [46].
The preprocessing of the dataset is performed on the Pycharm
(2018.2.4 version) soft platform and running on Windows 7 with
Intel CPU i5-4460 (3.20 GHz) and RAM (16.0 GB). The network
model training and evaluation are carried out on the Pytorch
architecture and run on a Linux server with Intel Xecon CPU
(2.20 GHz) and NVIDIA Tesla GPU K80 (24.0 GB).

A. Dataset Descriptions

MSTAR is a baseline X-band SAR imagery dataset with a
resolution of 0.3 x 0.3 m, including ten classes of ground targets,
such as BMP2 (infantry combat vehicle), BTR70 (armored
personnel carrier), T72 (main tank), etc. The samples are shown
in Fig. 7. The number of training and testing datasets of MSTAR
is shown in Table I. The depression angle of training and testing
datasets is 17° and 15°, respectively. The azimuth angle of each
class is full of 360° for each class.
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TABLE I
NUMBER OF SAMPLES OF THE MSTAR DATASET (SOC)

Dataset Depression ~ Azimuth ~ 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72  ZIL131 ZSU234  Total

Training 17° 360° 299 233 298 256 233 299 299 232 299 299 2747

Testing 15° 360° 274 195 274 195 196 274 273 196 274 274 2425
C. Results

®

(& () ® )]

Fig.7. MSTAR data samples [3], optical images (top), and their corresponding
SAR images (bottom). (a) 2S1. (b) BMP2. (c) BRDM2. (d) BTR60. (e) BTR70.
() D7. (g) T62. (h) T72. (i) ZIL131. (j) ZSU234.

In order to better validate the performance of the proposed
LW-CMDANet, we construct four types of small training sub-
datasets, i.e., subset-200, subset-100, subset-50, and subset-20,
from the overall training dataset of MSTAR to train the LW-
CMDANet in our experiments. The number of these subdatasets
for each class is different. For example, there are 200 SAR image
samples for each class in subset-200 (a total of 2000 samples for
ten classes). In addition, we select 20 samples of each class
from the training dataset of MSTAR and a total of 200 samples
to construct a validation dataset, which is different from the
previous four training subdatasets. The validation dataset of the
four experiments is the same. The testing dataset of each class is
the testing dataset of the MSTAR, which has not been changed
in each experiment. To alleviate the degradation of clutter or
speckle noise in SAR-ATR performance, we crop the original
SAR image (all training, validation, and testing datasets) with a
size of 128 x 128 into 40 x 40 centered on the midpoint of the
original image.

B. Setting and Training

All the experiments adopt the Adam optimizer [56], and the
initial learning rate is 10~*, which is half annealed every 50
training epochs. The total number of training epochs is 200.
The batch size is 64. After each training epoch, we use all the
testing datasets to test the performance of the trained model.
According to the analysis of qualitative and quantitative results,
we evaluate the performance of our proposed method through
the training loss curve, average test accuracy curve, and feature
map visualization compared to some existing SOTA methods.

This part has analyzed all the experimental results of our
proposed method and existing SOTA methods in detail from
quantitative and qualitative experimental results. The perfor-
mance metrics include recognition accuracy and computational
complexity. In addition, the ablation experiments have been
conducted to further verify the effectiveness of our proposed
method. These experimental results have confirmed the feasi-
bility and efficiency of our proposed method compared to the
existing SOTA methods.

1) LW-CMDANet Performance: The training loss curve and
the test recognition accuracy curve of the LW-CMDANet on
four different MSTAR training subsets are shown in Figs. 8
and 9, respectively. As seen from Fig. 8(a), overfitting appears
in the subset-20 experiment, since the validation loss curve
fluctuates in the range 0.03—0.04 during all the training process,
which is inconsistent with the training loss curve, while the
testing accuracy of the subset-20 experiment is only about 52%
when the LW-CMDANet reaches convergence, as illustrated
in Fig. 9. The reason behind this is that the number of data
samples of the subset-20 is extremely small, i.e., 20 samples
for each class. There are more than 30 SAR image samples
within 0-360° of azimuth angles for each class of the MSTAR
dataset. However, the SAR imaging process is very sensitive
to the azimuth angle of the target [57]. That is, different angles
may produce very different SAR images with a same target, since
the electromagnetic scatter features of the target are extremely
different at different azimuths. These impact factors include
target shape, size, material types, and so on. Therefore, the
samples of subset-20 for each class are incomplete, which leads
to insufficient feature representation learning in the training
process.

With the number of training samples increasing, the training
performance is better, i.e., the validation and training loss curves
are more constant, which is closed to 0 when the training process
reaches convergence. Subset-50 converges at about the 50th
training epoch, while subset-100 and subset-200 converge at
about 25th and 10th training epoch, as shown in Fig. 8(b) and
(c), respectively. The more the SAR samples, the better the test
accuracy performance, as shown in Fig. 9. The test accuracy
rate of subset-20, subset-50, subset-100, and subset-200 is about
55.34%, 89.93%, 92.15%, and 96.63%, respectively, when the
training process reaches convergence.

In addition, in order to more clearly demonstrate the good
performance of our proposed method on each target category
recognition task, we have tested the recognition performance
of the trained LW-CMDANet on four experimental scenarios
with the testing dataset of MSTAR. The recognition results
are illustrated with confusion matrixes, as shown in Fig. 10.
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Fig. 9. Test recognition accuracy curves of all four experiments.

The diagonal line of the confusion matrix shows the number of
correct recognized samples for each class; others are the wrong
samples. It can be seen from Fig. 10 that with more training
samples, the performance of the model is higher in terms of
recognition accuracy, which is consistent with the result analysis
of Fig. 9.

2) Comparison With the Existing SOTA Methods: Besides,
we have compared the performance between the proposed LW-
CMDANet and the existing SOTA methods in terms of test
accuracy, as illustrated in Table II. In order to better compare
to the existing SOTA method, most of these compared SOTA
methods have a similar architecture, i.e., the same number of
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(d

Loss curves of the LW-CMDANet training on four different MSTAR training subsets. (a) Subset-20. (b) Subset-50. (c) Subset-100. (d) Subset-200.

convolutional layers. For example, the baseline CNN has four
standard convolutional layers and two FC layers. The HL-CNN
represents that this CNN model uses the hinge loss function;
the MobileNet represents that the middle two layers are depth-
wise separable convolution blocks; and the CNN-SENet in-
troduces the SE attention module into the CNN model. Simi-
larly, the attention module of CA, FCA, CBAM, the cascade
FCA, and DWT is also embedded into the CNN or A-ConvNet
model to construct the CNN-CANet, CNN-FCANet, CNN-
CBAMNet, CNN-FCA-DWTNet, and A-CNN-FCA-DWTNet,
respectively. In addition, we have also compared with latest
methods, such as YOLO-DMCCA [60], SAR-OVSM [64],
SAR-VGG-KNN [65], SAR-HOG [66], and SAR-BoVM [67].
As seen from Table II, when the training dataset is subset-200,
the test accuracy rate is more than 90% for all the methods except
for the CNN-CANet is about 85%.

The test accuracy of the CNN-FCA-DWTNet is higher than
that of our proposed LW-CMDANet when the training dataset
is subset-200 and subset-100. The reason behind this is that it is
insufficient to fully extract hierarchical features via the depth-
wise separable convolution operation of the LW-CMDANet,
due to the reduction of convolutional parameters compared to
standard convolution. If the model has enough data for training,
it is more advantageous to extract more effective input features
by slightly increasing the model parameters. When the training
dataset is subset-50 or subset-20, the accuracy of our proposed
LW-CMDANet (i.e., 89.93% and 55.34%, respectively) is higher
than that of the CNN-FCA-DWTNet (i.e., 86.16% and 55.04%).



LANG et al.: LW-CMDANET: A NOVEL ATTENTION NETWORK FOR SAR AUTOMATIC TARGET RECOGNITION

Fig. 10.

Confusion matrix

251 8 25 39 10 17 28 17 4 1
BMP24{27 77 1 43 13 1 0 31 0 2 200
BRDM2{ 74 8 . 25 22 8 3 11 4 6
BTR6O{ 9 0 1 29 14 3 4 0 0 150
% BTR70{ 0 33 1 38 0O 0 4 0 O
©
E p7{1 0 0 0 O 0 0 40 O 100
162166 0 0 19 2 15 3 24 7
77249 5 0 30 21 0 O 0 1
50
ZIL131{10 0 2 8 0 57 3 0 11
Zsu234{9 0 0 O O 78 42 0 17 E
———— 0
& I S A P I
VN SRS RO” AV & 9
T L E & A8
Predicted label
(€]
Confusion matrix
251 0
250
BMP24 0
BRDM2{ 3 200
BTR604 3
8 BTR704 0 150
§ p7{ 0
T624 1 100
1724 0
50
ZIL1314 0
ZsU2344 0 0
T ——— 0
B L I S R S
VN L L A" AV &
S %QS) Q"\ Q"\ ,‘>\/ 1:7\)
Predicted label
©

Confusion matrix

BTR70 -

D7 A

True label

T62

T72 A

ZIL131 A

ZSU234 -

22 6 0 0 35 0 3 0

N & &
& & &

01 o

»
¥
V'
'\S’/\f’o

O)- =

N
Q7 QY D

Predicted label

(b)

Confusion matrix

BMP2 A

BRDM2

BTR60 -

BTR70

True label

D7

T62 A

T72

ZIL131 A

ZSU234 4

Predicted label

(d

Confusion matrixes on four experimental scenarios: (a) subset-20, (b) subset-50, (c) subset-100, and (d) subset-200.
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TEST ACCURACY PERFORMANCE BETWEEN THE LW-CMDANET AND THE EXISTING SOTA METHODS ON DIFFERENT MSTAR DATA SUBSETS

Model Subset-200(%) Subset-100(%) Subset-50(%) Subset-20(%)
Baseline CNN 95.86 89.69 83.57 54.20
A-ConvNet [24] 96.58 90.93 82.24 47.89
ResNet [58] 95.97 89.27 83.55 53.67
HL-CNN 96.38 90.82 83.91 53.87
MobileNet [40] 96.91 90.02 83.91 53.87
CNN-SENet [44] 96.63 91.73 86.11 54.95
CNN-FCANet [45] 92.24 89.66 82.05 51.61
CNN-CBAMNet [46] 96.02 90.84 82.25 51.61
CNN-CANet [59] 85.88 73.87 70.41 49.54
YOLO-DMCCA [60] 91.38 86.69 60.56 40.23
SAR-OVSM [64] 93.68 76.35 50.57 45.67
SAR-VGG-KNN [65] 92.67 88.54 65.66 49.89
SAR-HOG [66] 93.26 74.58 48.97 43.26
SAR-BoVW [67] 93.38 78.32 53.65 48.23
A-CNN-FCA-DWTNet 95.94 87.84 73.66 44.20
CNN-FCA-DWTNet 97.15 92.98 86.16 55.04
LW-CMDANet (proposed) 96.63 92.15 89.93 55.34
LW-FCANet 96.76 91.88 89.75 54.82
LW-DWTNet 96.36 92.09 89.76 55.31
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Fig. 11.
and (d) subset-200.

The reason behind this is that the extracted features by the depth-
wise separable convolution of the LW-CMDANet are sparse and
generalized when the number of data samples is small, which is
beneficial to increase the generalization capacity to alleviate the
overfitting, while the standard convolution has more parameters
to extract more features, which is redundant for the limited
data samples to some extent. In addition, compared to [68], the
accuracy of our proposed method is 89.93%, which is higher
than 88% in [68] in the subset-50 experiment. However, the
accuracy of our proposed method is 92.15%, which is lower
than 95% in [68] in the subset-100 experiment. The reason of
this is that except for 100 labeled samples for each class, [68] has
extra unlabeled samples for each class to perform unsupervised
learning to assist the supervised learning on labeled samples.
Therefore, with the knowledge of unlabeled samples, [68] has
higher accuracy on the subset-100 experiment.

In order to further verify the effectiveness of our proposed
method, we compare the convergence performance between our
proposed method and the existing SOTA methods on the test
dataset during the training process. The convergence curves
of four kinds of experiments are illustrated in Fig. 11. It can
be seen from Fig. 11 that our proposed method converges the
fastest on all the experiments. The convergence point is at
about 50, 30, 25, and 10 epochs, as shown in Fig. 11(a)—(d),
respectively, while more training epochs are needed to reach the
convergence point for the comparison existing SOTA methods.
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Convergence curves of our proposed method and comparison SOTA methods on four experiment scenarios: (a) subset-20, (b) subset-50, (c) subset-100,

Moreover, our proposed method has higher performance in terms
of recognition accuracy, especially on the subset-50 experiment,
which achieves the highest accuracy rate, i.e., about 89.93%
when it reaches convergence. From the quantitative (see Table II)
and qualitative (see Fig. 11) experimental results, our proposed
method, i.e., LW-CMDANet, has higher performance in terms
of SAR target recognition accuracy when the number of data
samples is small compared with the existing SOTA methods.
The stability of the extracted features by the model can
directly affect the recognition performance. We have verified
the feasibility and effectiveness of our proposed method via
the visualization of the feature map stability. For simplicity, we
take the A-ConvNet and the baseline CNN model as compara-
tive examples. We have done the feature stability comparison
experiments between our proposed method and comparison
SOTA methods by t-distribute stochastic neighbor embedding
(t-SNE) [61], as illustrated in Fig. 12. In order to visualize the
experimental results, the input high-dimensional feature maps,
extracted by the trained model, are reduced to 2-D by t-SNE.
In general, the effective and efficient model has larger interclass
difference and higher intraclass aggregation in the feature map
space than that of the poor model. It can be seen from the
2-D feature representation space of t-SNE in Fig. 12, with the
number of training data samples increasing, the feature maps of
different targets are more distinguishable. More specifically, in
the subset-20 experiment, it is difficult to observe the interclass
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difference, which presents a large degree of confusion on the
recognition results, as shown in Fig. 12(a), (e), and (i). As for
the subset-200 scenario, the interclass difference between the
different targets is obvious, and there is a high aggregation
degree in the intraclass, as illustrated in Fig. 12(d), (h), and
(1). Compared to the feature maps extracted by the baseline
CNN and the A-ConvNet in the four experiments, our proposed
method, i.e., LW-CMDANet, has higher performance in terms
of interclass feature map separation and intraclass feature map
aggregation. Therefore, our proposed method has effective and
efficient recognition performance, which is consistent with the
quantitative results, as shown in Table II.

3) Computational Complexity: In addition to recognition ac-
curacy, the computational complexity is also a key factor for
SAR-ATR, which is determined by the learnable parameters,
data size, other nonlearnable parameters, and so on. Taking the
subset-20 experiment as an example, we have compared the
training time and the testing (i.e., inference) time between our
proposed method and comparison SOTA methods, as shown in
Figs. 13 and 14 [64], respectively. The testing time is regarded
as the computational cost when only one SAR image from
the testing dataset is used as the input of the trained model.
It can be seen from Figs. 13 and 14 that the models with the
cascaded multispectrum and multiresolution spectrum attention

The computational costs

LW-DWTNet 358
LW-FCANet 248
CNN-FCA-DWTNet 346
A-CNN-FCAN-DWTNet 335
YOLO-DMCCA(61] 234
CNN-CANet[60] 255
CNN-CBAMNet{46] 240
CNN-FCANet[45] 214
CNN-SENet[44] 212
MobileNet[40] 209
HL-CNN 168
ResNet(59] 167
A-ConvNet([24] 163
Basline CNN 166
SAR-BoVW(68] 20
SAR-HOGI67] 28
SAR-VGG-KNN[66] 1123
SAR-OVSM[65] 8
LW-CMDANet(ours) 393
10! 102 10°

Training time /s

Fig. 13.  Training time on the subset-20 experiment.

module need more computational cost except for SAR-VGG-
KNN, such as LW-CMDANet, CNN-FCA-DWTNet, and A-
CNN-FCA-DWTNet. Except for the learnable parameters, there
are many nonlearnable operations in the cascade multispectrum
and multiresolution spectrum attention module, such as the 2-D
DCT and 2-D DWT operations of the feature map. Compared to
some other SOTA models, e.g., baseline CNN and ResNet, these
operations need a little bit larger computational cost. Although
the training time of our proposed LW-CMDANet is 393 s (less
than 7 min) for all 200 epochs, the testing time is just about
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Fig. 14. Testing time on the subset-20 experiment.

0.5071 x 1073 s. As seen from Figs. 13 and 14, the training time
or testing time of YOLO-DMCCA, SAR-HOG, SAR-BovW,
and SAR-OVSM is obviously lower than that of LW-CMDANet,
such as the training time of SAR-OVSM is only 8 s. Since
the YOLO-DMCCA model has pretrained in the large-scale
dataset to obtain the prior knowledge, which can accelerate the
training speed in the following SAR-ATR task. The SAR-HOG,
SAR-BovW, and SAR-OVSM are not DL-based methods, which
do not have a large number of parameters to train during the
training process. In addition, the features of these methods are
manually extracted via the feature extractor, such as Gabor
filter in SAR-BovW. However, the recognition accuracy of these
methods is limited than that of LW-CMDANet, as shown in
Table II. In addition, the training time of [68] is 2.35 s per
training epoch, while our proposed method is 1.97 s. The ex-
perimental result analysis of the computational complexity has
demonstrated that our proposed method has better or competitive
performance compared to some existing SOTA methods.

4) Ablation Experiments: In order to further verify the ef-
fectiveness of our proposed method, we have implemented the
ablation experiments. Compared with our proposed method, i.e.,
LW-CMDANet, the two comparison models are designed: one
has only a multispectrum attention module, i.e., LW-FCANet,
while the other has only a multiresolution spectrum attention
module, i.e., LW-DWTNet. The experimental results of test
accuracy and the computational complexity of ablation experi-
ments are shown in the last two rows of Table II and Figs. 13
and 14. It can be seen from Table II that the test accuracy
of our proposed method, LW-FCANet, and LW-DWTNet is
96.63%, 96.76%, and 96.36% in the subset-200 experiment, re-
spectively. The LW-FCANet is slightly higher than our proposed
method. One reason is that when the training dataset is relatively
sufficient, the DWT may cause information loss, because the
high-frequency component of the DWT, i.e., xff, has been
excited in our proposed method, while the test accuracy of our
proposed method is higher than LW-FCANet and LW-DWTNet
in all the subset-100, subset-50, and subset-20 experiments. The
reason is that when the training data are small, the multidomain
features can improve the generalization of the model. When
compared to the MobileNet [40] (without any attention module),
our proposed method has a higher test accuracy, i.e., 92.15%,
89.93%, and 55.34% in subset-100, subset-50, and subset-
20 experiments, respectively, while the MobileNet is 90.02%,
83.91%, and 53.87%, respectively. As seen from Fig. 13, the
training time of our proposed method (393 s) is larger than that of
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two ablation experiments (248 and 358 s, respectively), since our
proposed method is more complex, which includes two attention
modules. The inference time, i.e., testing time of an input image,
of our proposed method is 0.5071 x 1073 s, which is larger than
0.3226 x 1073 of LW-FCANet and smaller than 0.5092 x 1073
of LW-DWTNet, as shown in Fig. 14. These experimental results
have demonstrated that the computational cost of our proposed
method is better or more competitive.

D. Discussions

Our proposed method can effectively alleviate the overfitting
and computational cost problems at limited data scenarios,
which benefits from the following four aspects, i.e., data pre-
processing, cascaded multispectrum and multiresolution spec-
trum attention module, depthwise separable convolution, and
nongreedy learning strategy. First, we slice all the input SAR
images into the size of 40 x 40 as data preprocessing, which
can efficiently alleviate the degradation of clutter or speckle in
the recognition performance. Owing to the input interference,
such as noise, the performance of the deep neural network may
be severely deteriorated.

Second, the extracted features are more sparse and abstractive,
the generalization of the model is better, and the model is more
beneficial to alleviate the overfitting problem [62]. Multidomain
feature subspace fusion representation learning, performed by
the convolution operation, cascaded multispectrum (i.e., 2-D
DCT), and multiresolution spectrum (i.e., 2-D DWT) atten-
tion module, is effective and efficient, which can contribute
to completely extract features of the input image from spatial,
frequency, and wavelet transform domains at the same time
via an end-to-end model. The multidomain feature subspace
fusion can greatly enrich the feature representation space of the
input image. In this way, the feature extraction of the proposed
method can be performed from the spatial domain, frequency
domain, and wavelet transform simultaneously. These extracted
feature maps have higher degree of sparsity and generalization
compared to only the original spatial feature space. Therefore,
multidomain feature subspace fusion representation learning
can efficiently alleviate the overfitting problem and improve the
recognition accuracy in the case of limited data.

Third, the more the parameters of the model, the easier the
overfitting appears in the model . In order to reduce the number
of parameters of the proposed method, we introduce the depth-
wise separable convolution operation to replace the standard
convolution to reduce the eight to nine times of parameters (as
explained in Section III-C). Therefore, the extracted features of
the model are sparse and less redundant, which can alleviate the
overfitting to some extent.

Finally, we adopt a nongreedy training strategy to replace
the standard greedy training (i.e., cross-entropy loss function)
method. More concretely, we use the hinge loss function to
replace the traditional cross-entropy loss function to perform
nongreedy learning. This strategy is effective to address the
overfitting problem, as illustrated in our experimental results.

However, our proposed method has main four limitations.

1) We have sliced the original SAR image size of 128 x 128

into 40 x 40 to alleviate the bad influence of background
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clutter and noise in the SAR-ATR task. Therefore, our pro-
posed method is effective only for spotlight SAR images,
since this type of image has high signal-to-clutter or noise
ratio, high resolution, and small imaging background.
Therefore, its application is limited.

2) Since our proposed method is a multidomain feature sub-
space fusion representation learning, which may not be
well in robustness with respect to disturbed input image.

3) The choice of frequency components in the frequency
spectrum attention module is only four specific frequency
components, which maybe degrade the recognition per-
formance on other datasets. Therefore, the optimal choice
strategy of frequency components after the DCT of feature
maps should be studied.

4) The DWT and the DCT of feature maps need larger
computational cost compared to some existing attention
module.

Therefore, it needs more computational time during training
and testing processes than some SOTA methods, such as CNN-
CANet [59] and CNN-CBAMNet [46]. Therefore, our proposed
method maybe is limited in some practical real-time scenarios.
According to above limitations, we will go further study our
proposed method in our future work.

V. CONCLUSION

This article proposed an alternative end-to-end lightweight
network based on a cascade multidomain attention (i.e., LW-
CMDANet) to improve the recognition performance of the
DL model in the limited data sample scenarios. Our proposed
method made full use of the advantage of the multidomain
feature subspace fusion representation learning method and
the lightweight CNN design to improve the feature extraction
capacity of the DL model. These extracted features were sparse
and generalized, which can effectively and efficiently alleviate
the overfitting and computational cost problems of the deep-
CNN-based model. The qualitative and quantitative experimen-
tal results on the MSTAR dataset demonstrated that our proposed
method has better or competitive performance compared to the
existing SOTA methods. Our proposed method has a bright
application prospect in the practical SAR-ATR field. However,
there are still some issues that need to be improved, such as
the optimal choice strategy of frequency components after the
DCT of feature maps and the acceleration of the DWT of feature
maps. In addition, our proposed method was verified only at the
standard MSTAR dataset. We will verify the performance of our
proposed method at more complex SAR imaging conditions in
the future work.
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