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Annual 30-m big Lake Maps of the 
Tibetan Plateau in 1991–2018
Rui Zhao  1,2, Ping Fu  1 ✉, Yan Zhou  2,3, Xiangming Xiao  4, Stephen Grebby  5, 
Guoqing Zhang  6 & Jinwei Dong  2,7 ✉

Lake systems on the Tibetan Plateau (TP) are important for the supply and storage of fresh water to 
billions of people. However, previous studies on the dynamics of these lakes focused on monitoring on 
multi-year scales and therefore lack sufficient temporal information. Here we present a new dataset 
comprising annual maps of big lakes (>10 km2) on the TP for 1991–2018, generated by utilizing all 
available Landsat images in conjunction with Google Earth Engine. The annual lake maps with high 
overall accuracy (~96%) highlight distinctive lake distribution and lake changes: (1) about 70% number 
and area of lakes concentrated in the Inner basin; (2) generally increasing trends in both the area (by 
33%) and number (by 30%) of lakes from 1991 to 2018; (3) the total area changes were dominated by 
larger lakes (>50 km2) while more fluctuations in the lake number changes were found in medium 
lakes (10−50 km2). Our dataset infills temporal gaps in long-term inter-annual variations of big lakes, 
contributing towards enhanced knowledge of TP lake systems.

Background & Summary
The Tibetan Plateau – often referred to as the Third Pole and ‘Water Tower of Asia’ – has the highest number 
and largest area of lakes (approximately 50,000 km2 or 50% of the total lake area) in China1. These lakes are 
sensitive to global and regional environmental changes, which makes them ideal indicators of climate change2,3. 
Monitoring lake area change is therefore essential with respect to regional environmental and climate change 
issues; it benefits an enhanced understanding of local cryosphere changes and their impact on ecosystems, 
energy and hydrological cycles, and on livelihoods4,5. However, most studies rely upon lake mapping results 
obtained for irregular or large time intervals (i.e., five-year interval) to analyze lake responses to climate change, 
and so a continuous annual history of detailed lake variations across the whole TP has not yet been examined6–8.

Most existing lake extent maps were generated using satellite imagery acquired at discrete time points, which 
limits their inter-year comparability since lakes undergo areal changes every year and even every day1,3,9–18. Some 
studies have also only focused on a specific lake type or area of the TP1,6,19–23. There are only a few datasets providing 
continuous annual lake maps2,24, however, they either do not provide lake maps with high spatial and temporal reso-
lution over the TP since they address global- or national-scale issues, or they contain a relatively large degree of uncer-
tainty due to problematic data or limitations in the suitability of the methods employed to map lakes on the TP2. For 
instance, the use of top-of-atmosphere reflectance data without atmospheric correction would likely introduce uncer-
tainty into the global surface water body dataset generated by Pekel et al., since atmospheric correction is a necessary 
step to extract quantitative information from the satellite imagery to remove the effects of aerosols, clouds and cloud 
shadows2,25,26. Moreover, the use of ancillary maps and data products in generating this global water dataset could also 
have introduced additional inaccuracies and inconsistencies to the resultant maps, since these were generated from 
different resources using different standards and mapping approaches and likely have varying degrees of accuracy.

The most recent annual maps of China’s surface water area and storage (1989–2016) have poor data quality 
for 1989 and 1990 in the TP area due to limited Landsat imagery and, without further removal of glaciers or 
rivers, the data on lakes smaller than 30 km2 on the TP carries large uncertainties27. Therefore, it is challenging 
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to assess the lake dynamics on the TP using any of the existing datasets. Consequently, the incomplete and 
non-continuous historic lake dynamics record hampers attempts to fully understand the underlying driving 
hydrologic mechanisms on the TP. To help overcome this, a more detailed and complete historic record of 
changes in the number and size of lakes on the TP is required.

This study presents a new continuous dataset of annual lake maps on the TP for 1991–2018, which is gener-
ated by using all of the available archived Landsat imagery in conjunction with the Google Earth Engine (GEE) 
cloud-computing platform. The dataset focuses on lakes >10 km2 in size (hereinafter termed ‘big lakes’) as 
they account for more than 90% of the total lake area on the TP9,17. Given the dominance of big lakes and the 
challenges in identifying smaller lakes in high mountain regions in satellite imagery (e.g., insufficient spatial 
resolution, obscuring effects of clouds, snow and topographic shadow), most studies – including the present 
one – utilize only lakes larger than 10 km2 to capture a reliable representation of lake change dynamics across the 
TP6,8,28. To achieve this, we apply an automatic mapping approach to detect water bodies on the TP that involves 
the use of spectral indices and the concept of water frequency to generate annual maps of the big lake extents. 
The result is a detailed annual lake record for the three most recent decades, which can provide an enhanced 
understanding of lake change dynamics across the TP and help establish the underlying driving mechanisms.

Methods
Study area. The TP is situated in central Asia (25°59′ N–39°49′ N; 73°29′ E–104°40′ E) and is the most exten-
sive and highest plateau in the world, with an average elevation of more than 4000 m above sea level (a.s.l.) and 
an area of 2.5 × 106 km2,29. There were ~1400 lakes of >1 km2 in size on the plateau in 2018, and 453 of these were 
larger than 10 km2,17. The changing hydrology on the TP has exerted huge impacts on ecosystems and human 
society, since it is the original water source for many essential rivers in Asia, supplying water to ~22% of Earth’s 
population for agricultural, industrial, and domestic use30. The climate across the TP varies significantly owing 
to its heterogeneous geography with annual average temperature from −4.1 °C in the Inner basin to 1.7 °C in 
Brahmaputra basin31. With its high elevation and broad surface, the plateau also acts as a barrier for the westerlies 
and monsoon atmospheric circulation. The plateau lies in the arid portion of the monsoon region and experi-
ences a gradient of decreasing precipitation from east to west of 335–430 mm/yr32. The monsoonal climate area 
(Brahmaputra and Salween basins outlined in purple in Fig. 1) experiences summer rains and winter droughts, 
whereas the westerlies-controlled area (Tarim and Indus basins outlined in blue in Fig. 1) is extremely arid in 
winter with relatively more precipitation in summer. The other basins receive influences from both the Indian 
summer monsoon (ISM) and westerlies to some extent33, as indicated in Fig. 1.

Source data. We obtained Landsat Collection 1 Tier 1 surface reflectance satellite imagery for Landsat 5 
Thematic Mapper I, Landsat 7 ETM + , and Landsat 8 Operational Land Imager (OLI)/TIRS from the United 

Fig. 1 The Tibetan Plateau and ten main basins with hydrological features. Basin names are shown along  
with lakes in 2018 (dark blue polygons), China’s first order rivers on the TP (in light blue), and Glacier Area 
Mapping for Discharge from the Asian Mountains36 (in white). Arrows represent Westerlies (in blue) and ISM 
(in purple)47,48.
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States Geological Survey (USGS). All data in the collection have been atmospherically and geometrically cor-
rected, and cross-calibration between different sensors has been applied34. Lakes were mapped using all the 
available imagery acquired during the period 1991–2018. It was not possible to map lakes at high temporal 
resolution prior to 1991 because the coverage is incomplete for the study area2,35. A summary of the source 
imagery used is shown in Table 1. Modern glacier polygons derived from Glacier Area Mapping for Discharge 
from the Asian Mountains (GAMDAM)36 were also used to avoid the possibility of glaciers being incorrectly 
mapped as lakes.

The study area is divided into ten basins as shown in Fig. 11,37, due to the vast extent of the TP and its spatial 
heterogeneity. The boundaries of the TP were taken from the Datasets of the Boundary and Area of the Tibetan 
Plateau (DBATP), which is a result of long-term fieldwork and was released and revised in 201429.

Annual lake map generation. An approach based on water frequency – which is the ratio of the number 
of water observations at each location to the total number of images used in a year38 – has proven effective for 
obtaining reliable representations of annual water bodies27. This is especially important for the TP, where signif-
icant seasonal variations in lake boundaries are observed13,14. The frequency map approach can also further help 
reduce the impact of cloud shadows and other cloud artifacts to improve the accuracy of the mapping. Also, this 
method can avoid the drawbacks of manual visual interpretation and mapping of lakes based on their appearance 
on remotely sensed imagery, which can be time-consuming over large areas and somewhat subjective. The map-
ping approach employed involves several steps, including image preprocessing, water body map generation, and 
annual lake map production based on the water frequency, as shown in Fig. 2.

Image preprocessing. All satellite images were processed for the removal of terrain and cloud shadow, clouds, 
and snow pixels using the CFMask tool designed for preparing Landsat imagery for accurate change detec-
tion39. Specifically, mountain shadows were masked using the function that calculates the solar azimuth and 
zenith angles using Landsat data and the 30 m Shuttle Radar Topography Mission (SRTM) digital elevation 
model. Clouds and their shadows were removed using the cloud and cloud shadow mask functions, respectively. 
Furthermore, the presence of permanent and temporary snow cover on the TP was masked using the corre-
sponding snow mask function. This preprocessing resulted in the production of a collection of cloud-, shadow- 
and snow-free scenes of all the available Landsat imagery for the period, which comprised an average of 2839 
images per year, ranging from 1927 images for the year 1991 to 4839 for 2018.

Generation of water body maps. Water body maps were subsequently generated from the preprocessed Landsat 
images using the Modified Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation 
Index (NDVI), and Enhanced Vegetation Index (EVI), as reported in previous studies25,38:
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where ρBlue, ρGreen, ρRed, ρNIR and ρSWIR1 are the surface reflectance values for the blue, green, red, near-infrared 
(NIR) and shortwave infrared-1 (SWIR1) bands of the Landsat sensors40–42.

The MNDWI enhances water features in the imagery and has been widely applied to identify the presence of 
water bodies in various regions40–42. It also has the added benefit of eliminating any residual effects associated 
with mountain shadows and light cloud cover40–42. Since low-lying vegetation in proximity to wet surfaces is 
one of the major causes of commission error in open surface water body mapping, in this study we combined 
MNDWI and vegetation indices (NDVI and EVI) using logical operators to improve the discrimination capabil-
ities of the water body mapping algorithm25,38:

Water body MNDWI EVIorMNDWI NDVI and EVI( ) ( 0 1) (4)= > > < .

where ‘MNDWI > EVI or MNDWI > NDVI’ identifies pixels that have a stronger water signal than vegetation 
signal25,38, while ‘EVI < 0.1’ ensures that all vegetation pixels or mixed water-vegetation pixels can be removed39. 
Only pixels meeting the criteria were classified as corresponding to water bodies and all other pixels were 

Sensors Period Number of images Bands used

Landsat 5 1991–2011 39,379 Blue, Green, Red, NIR, SWIR1

Landsat 7 1999–2018 43,820 Blue, Green, Red, NIR, SWIR1

Landsat 8 2013–2018 18,569 Blue, Green, Red, NIR, SWIR1

Table 1. An overview of all satellite imagery used in this study. NIR: Near-infrared; SWIR: Shortwave infrared
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classified as non-water pixels25,38. The criteria are effective in distinguishing water body from non-water pixels 
on Landsat images27, and so it was used to generate water body maps for each of the 101,768 individual Landsat 
images.

Generation of water frequency and annual lake maps. The individual water body maps for each year were col-
lated and then used to compute yearly water frequency maps (28 in total). The water frequency for each pixel in 
a water frequency map was calculated according to Zou et al.25 as:

∑= ∗
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y

where F is the water frequency,y is the year, Ny is the total number of Landsat observations for that pixel in that 
year, while Wy,i denotes whether a pixel in a water body map is classed as water (represented by a value of 1) or 
non-water (a value of 0).

A permanent water surface is underwater throughout the entire year2, which should correspond to an annual 
water frequency (F) of 100% in a frequency map. However, the water frequency of pixels corresponding to water 
bodies that do persist all year long can be less than 100% due to the obscuring effects of cloud cover and shadow 
in the satellite imagery. For instance, some clouds (i.e., optically thin clouds that were not masked) that obscure 
the presence of an actual permanent water body beneath have a chance of being classified as non-water in the 
water body maps, which in turn would reduce the water frequency of the corresponding pixels in the annual 
water frequency map. To overcome this problem, we set a threshold of F ≥ 75% to classify pixels in the frequency 
maps as permanent water pixels. The choice of the threshold value of 75% is in line with previous studies25,27,38 
and has been confirmed that it was the most appropriate threshold value for indentifying permanent water 
bodies in the TP area. After applying the threshold to the water frequency maps, areas of permanent water were 
extracted using the Reclassify Tool in Arcpy as pixels comprising water for the vast majority of the year38. Only 
these permanent water bodies were selected for inclusion in the inter-annual dataset, since the temporary bodies 
of water could be associated with seasonal inundations and irrigation activities2,41,43.

Next, the permanent water body extents were converted from raster to vector format to produce annual 
lake maps. These water body polygons were then intersected with the modern glacier polygons to remove any 
glaciers that were incorrectly mapped as lakes. Furthermore, the presence of other water bodies, such as rivers, 
was manually detected and removed to further improve the quality of the lake mapping dataset. The remaining 
permanent water bodies were then considered to comprise only lakes. Finally, after filtering the dataset to retain 
the lakes with areas larger than 10 km2, the area and perimeter of each big lake were computed to facilitate the 
determination of inter-annual lake changes.

Data Records
A total of 28 annual lake maps are provided for the entire TP for the period 1991–2018. The dataset is available 
at the figshare repository in the Esri shapefile format and a statistical summary file (https://doi.org/10.6084/m9.
figshare.13633880)44. The dataset is provided in the ESPG: 4326 (WGS_1984) spatial reference system. The 28 
annual big lake maps comprise polygons demarcating the location and extent of each lake, and are attributed 
with information on the shape (Shape*), perimeter (Shape_Leng) and area (Shape_Area). These annual maps 

Fig. 2 Methodological overview of continuous monitoring of lake dynamics on the TP using Landsat imagery.

https://doi.org/10.1038/s41597-022-01275-9
https://doi.org/10.6084/m9.figshare.13633880
https://doi.org/10.6084/m9.figshare.13633880


5Scientific Data |           (2022) 9:164  | https://doi.org/10.1038/s41597-022-01275-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

cover the geographic area from 73°29’ E to 104°40’ E longitude, and from 25°59’ N to 39°49’ N latitude. The maps 
can be visualized and analyzed in ArcGIS, QGIS or any similar software packages.

Technical Validation
In order to assess the thematic accuracy of the water body mapping algorithm, we chose to validate the accuracy 
of the 2018 lake map, given that this year had the highest temporal resolution of very-high resolution (VHR) 
images in Google Earth. In particular, the high number of VHR images acquired between June and October – 
when the presence of cloud cover is relatively high and lakes are close to their maximum area – increases the 
likelihood of obtaining cloud-free scenes that capture a representative perspective of the status of the lakes to 
permit a reliable validation of the mapping results45. A total of 1000 sample points inside the lake polygons and 
another 1000 samples outside the lake polygons were randomly generated across the TP using the ArcMap 
software. A validation dataset was then compiled by assigning each sample point as either permanent water or 
non-permanent-water through visual interpretation based on VHR images in Google Earth. Since the classifica-
tion of 91 of the validation sample points was not possible due to persistent cloud or snow cover and other image 
limitations, the remaining 1909 sample points were used to calculate the accuracy through a confusion matrix. 
This was performed by comparing the designation of the validation points to those in the lake map to determine 
the proportion of points that were correctly classified. The results revealed an overall accuracy of 95.8% and a 
Kappa coefficient of 0.92 (Table 2). In addition, the user’s and producer’s accuracies of the lake maps are 92.1% 
and 98.9%, respectively. We also compared the dataset with another recent dataset of lakes larger than 1 km2 in 
Tibetan Plateau (V2.0) (mapped several specific years from 1970s to 2018)1, generated by using visual interpreta-
tion and NDWI. The area of lakes >1 km2 is only about 3.2–5.6% larger than the area of lakes >10 km2 mapped 
here, and that dataset also exhibits a similar change trend from 1991 to 2018 that further validates our method. 
The Joint Research Centre (JRC) dataset2, which represents significant progress in the remote sensing applica-
tion of surface water mapping, was also used for comparision. Since the JRC dataset includes small lakes and 
streams, it has a moderately higher total lake area for TP region than that in our dataset. Nevertheless, the two 
datasets show very similar change trends on the whole (Fig. 3). The largest deviation between the two datasets 
occurs for 1997, when there is a substantial decrease of lake area in the JRC dataset and only a minor decrease 
was seen in our data (which has an overall accuracy of 93.4% for this year). The main differences between 
these two datasets could be due to subtle differences in the range of water bodies mapped (i.e., we excluded all 
rivers and lakes smaller than 10 km2, whilst the JRC dataset includes these), differences between using Lansdat 
top-of-atmosphere reflectance and surface reflectance data, as well as inherent differences between the mapping 
methods. Overall, the high mapping accuracy and comparison with the existing datasets attest the reliability and 
enhanced potential for ultising the 1991‒2018 annual lake map dataset for additional applications.

Overall, accurate mapping of lakes depends on the quality and spatio-temporal resolution of the remotely 
sensed data and the choice of water body mapping algorithm8,46. In general, the uncertainty of the lake extent 
delineation using satellite data is inversely proportional to the spatial resolution of the images used, since the 
lakes or their associated boundary changes may be smaller in size than that of a pixel8. This is also the case for 
the identification of emerging and disappearing lakes. In this study, only the mapping of sizeable lakes (>10 
km2) was performed, which is larger than the mapping unit (pixel size) of 30 m. While this excludes the analysis 
of smaller lakes, it is still possible to gain an accurate and reliable representation of lake dynamics across the 
TP given that 90% of the lakes are >10 km2. Furthermore, the ability to generate a consistent long-term dataset 
that captures the dynamics of the lakes is only possible due to the extensive archive of satellite imagery provided 

Lakes Non-lakes User’s Accuracy

Lakes 840 72 0.92

Non-lakes 9 988 0.99

Producer’s Accuracy 0.98 0.93 Overall accuracy = 95.8%  
Kappa coefficient = 0.92

Table 2. Confusion matrix detailing the accuracy of the 2018 lake map (user’s accuracy refers to reliability and 
producer’s accuracy is the probability that a lake on the ground is classified as such).

Fig. 3 Comparision between JRC data and our results from 1991 to 2015.
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by the long-running Landsat earth observation program. Whilst satellites with improved spatial and spectral 
capabilities may facilitate more detailed mapping for the future and recent past, a long-term historical analysis 
of lakes on the TP is inherently constrained by the imaging capabilities of the Landsat satellites.

In this study, the use of an automatic method was critical for large-scale lake mapping over a long time 
period, as the manual interpretation of over 100,000 individual Landsat images would have been an extremely 
laborious task. Also, compared to other studies that use only single images to extract lakes for each year, calcu-
lating the water frequency helps to improve the mapping accuracy by mitigating the effect of clouds and their 
shadows, as well accounting for seasonal changes of the lakes25. This was achieved by applying a water body 
frequency threshold of 75% to capture only permanent lakes, therefore increasing the reliability of the observed 
inter-annual variation trends2,38,46. The water frequency approach also mitigates potential differences in the reli-
ability when mapping using imagery acquired from Landsat 5, 7 and 846, particularly those surrounding the 
number of observations available for each year based on the operational periods of the satellites. Although there 
were an average of 1790 good observations each year for 1991‒1998 from Landsat 5, 3981 images each year for 
1999‒2012 acquired from Landsat 5 and 7, and 5286 satellite images each year for 2013‒2018 from Landsat 7 
and 8, all map products performed comparably well (with accuracy >95%2,27) in capturing surface water regard-
less of the platform or number of observations. Therefore, the influence of using three Landsat sensors on the 
mapping results is considered negligible. Furthermore, a consistent method of lake mapping was applied to 28 
years’ worth of data, which also helps to further reduce any uncertainties in the observed trends38. Finally, the 
intersection with glaciers and manual removal of rivers further improves the quality of the lake mapping results.

In the future, with improved access to higher spatial resolution data, the mapping of smaller lakes and the 
analysis of the drivers could be undertaken to analyze contemporary lake change dynamics. In addition, the 
method outlined here could be applied to imagery as it is acquired, in order to rapidly update the lake maps for 
the TP in near-real time. The ability to map and analyse seasonal (intra-year changes) is currently restricted by 
the lack of sufficient observations needed to reliably generate monthly or bi-monthly water frequency maps, due 
to the prevalent cloud cover over parts of the TP, especially during the summer. However, with access to satellites 
or constellations of satellites with a shorter revisit time in the future this will likely become possible as higher 
frequency acquisitions would maximise the opportunity to obtain more cloud-free images.

Usage Notes
The lakes on the TP are highly dynamic and mapping their inter-annual variations can provide enhanced insights 
into the effects of climate oscillation or extreme climate events. Tracking the inter-annual lake dynamics can 
also provide a valuable indication of the future of the TP hydrological system. In this study, we have produced 

Fig. 4 Lake area variation. (a) Lake size changes across the TP; (b) Siling Co and (c) Zhuo Nai Lake area 
variations; (d), (e) Qinghai Lake area variation from 1991 to 2018.
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maps with relatively high temporal resolution (1 year) and spatial resolution (30 m) for a long time-series (28 
years) for all TP lakes larger than 10 km2. This continuous long-term record therefore allow us to examine the 
lake changes in detail and ensures that any crucial and relatively rapid changes in the trends are not missed. 
The annual lake maps are valuable for investigating the spatial heterogeneity of lake change patterns across the 
plateau and for investigating the changes of specific lakes. Particularly, the high accuracy of the maps ensures 
the quality and reliability of the obtained change records for those important lakes (Fig. 4). If combined with 
climatic data of high spatial and temporal resolution or change records of environmental elements like glaciers, 
permafrost and vegetation, the annual lake maps would allow for an in-depth analysis of the mechanism behind 
the changes or the linkage between them. The lake boundaries are also important for the validation of global and 
regional hydrological modelling and can be used to improve the predication capability of models to aid a bet-
ter understanding of the water resources, which would further inform policy-making and support sustainable 
development in the region. The data may also contribute to regional and local flood risk mapping across the TP.

Data statistical properties. We performed a statistical analysis on the dataset to further demonstrate the 
value of the new annual lake maps. With the presented continuous lake maps, we are able to track the changes 
associated with big lakes across the TP on an annual basis during 1991–2018. Overall, the TP lakes experienced 
a significant expansion from 1991 to 2018 (Fig. 5), with a considerable increase of 12976 km2 in area (40%) and 
130 in number (47%)44. This corresponds to overall change rates of lake area and number of 463 km2/year and 4.6 
lakes/year, respectively. In 2018, there were 409 lakes >10 km2 on the TP, comprising a total area of 45621 km2. 
In terms of the dynamics, the annual lake change record shows an increase in area from 1991 to 1992, followed 
by a sharp decrease in 1995 and then a significant and continuous increase since 1995, except in 2009 and 2015 
when decreases occurred (Fig. 5a,b). These fluctuations in lake area observed in 1992, 2009 and 2012 would not 
be detectable in five-year interval datasets, which were the highest temporal resolution lake datasets covering 

Fig. 5 Lake area and number dynamics. (a) Annual total number and area of lakes larger than 10 km2 on the TP 
from 1991 to 2018 (grey columns indicate what data will a five-year-map of lakes on the TP look like); (b) Lake 
number and area change rates; (c) lake area and (d) number change for medium lakes (10−50 km2) and larger 
lakes (>50 km2), respectively.

Fig. 6 Distribution of lakes on the TP. Lake number (a) and area (b) averaged for 1991–2018.
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the TP prior to this study (indicated in Fig. 5a). The change in the number of lakes follows a very similar pattern 
to the lake area (Fig. 5a,b). Similarly, a five-year interval lake number dataset with record of only 1995, 2000, 
2005, 2010 and 2015 would lack information for lake dynamics within those five-year intervals so that fewer 
fluctuations will be seen (Fig. 5a). Overall, the inter-annual fluctuation in lake area and number is highest during 
1991–1996 and around 2010 (Fig. 5b). Larger lakes (>50 km2) are seen to have contributed to the overall change 
in lake area across the TP (Fig. 5c). From 1991 to 2018, the total area of the larger lakes increased considerably by 
11521 km2 (39.9%), while the medium-sized lakes (10−50 km2) experienced a smaller areal increase of 1455 km2 
(38.7%). Although both the numbers of larger (from 116 to 173) and medium (from 163 to 236) lakes significantly 
increased during 1991–2018 (Fig. 5d), the fluctuation in the number of medium lakes is greater than that of larger 
lakes, most notably in 1995 and 2010.

We further calculated both the number and area of lakes for each basin and found that the lakes are unevenly 
distributed across the TP (Fig. 6). The Inner basin was found to have the highest average proportion of lakes 
with 73% of the total, followed by the Qaidam basin and Brahmaputra basin (Fig. 6a). On average, there are only 
0 to 15 lakes located in Tarim basin, Yangtze River basin and Salween basin, while the Mekong basin does not 
contain any lakes larger than 10 km2. The Inner basin has the largest lake area (67%), followed by Yellow (15%) 
and Qaidam (6%). Salween, Yangtze, Mekong and Tarim basins have the smallest total lake area on the TP.

code availability
The annual maps of lakes larger than 10 km2 from 1991 to 2018 were produced using GEE platform. Key 
JavaScript code developed for this work are openly shared with the scientific community at figshare repository44. 
GEE should be used to access and edit the code.
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