3 research outputs found

    Multifunctional Compartmentalized Capsules with a Hierarchical Organization from the Nano to the Macro Scales

    No full text
    Inspired by the cells’ structure, we present compartmentalized capsules with temperature and magnetic-based responsiveness and hierarchical organization ranging from the nano- to the visible scales. Liquefied alginate macroscopic beads coated with a layer-by-layer (LbL) chitosan/alginate shell served as containers both for model fluorophores and microcapsules, which in their turn encapsulated either another fluorophore or magnetic nanoparticles (MNPs). The microcapsules were coated with a temperature-responsive chitosan/elastin-like recombinamer (ELR) nanostructured shell. By varying the temperature from 25 to 37 °C, the two-hour release of rhodamine encapsulated within the microcapsules and its diffusion through the external compartment decreased from 84% and 71%. The devices could withstand handling and centrifugal stress, with 50% remaining intact at a rotation speed of 2000<i>g</i>. MNPs attributed magnetic responsiveness toward external magnetic fields. Such a customizable system can be envisaged to transport bioactive agents and cells in tissue engineering applications

    Layer-by-Layer Film Growth Using Polysaccharides and Recombinant Polypeptides: A Combinatorial Approach

    No full text
    Nanostructured films consisting of polysaccharides and elastin-like recombinamers (ELRs) are fabricated in a layer-by-layer manner. A quartz-crystal microbalance with dissipation monitoring (QCM-D) is used to follow the buildup of hybrid films containing one polysaccharide (chitosan or alginate) and one of several ELRs that differ in terms of amino acid content, length, and biofunctionality <i>in situ</i> at pH 4.0 and pH 5.5. The charge density of the ingredients at each pH is determined by measuring their ζ-potential, and the thickness of a total of 36 different films containing five bilayers is estimated using the Voigt-based viscoelastic model. A comparison of the values obtained reveals that thicker films can be obtained when working at a pH close to the acidity constant of the polysaccharide used (near-p<i>K</i><sub>a</sub> conditions), suggesting that the construction of such films is more favorable when based on the presence of hydrophobic interactions between ELRs and partially neutralized polysaccharides. Further analysis shows that the molecular weight of the ELRs plays only a minor role in defining the growth tendency. When taken together, these results point to the most favorable conditions for constructing nanostructured films from natural and distinct recombinant polypeptides that can be tuned to exhibit specialized biofunctionality for tissue-engineering, drug-delivery, and biotechnological applications
    corecore