4,158 research outputs found

    Dissociable Effects of Dopamine on Neuronal Firing Rate and Synchrony in the Dorsal Striatum

    Get PDF
    Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP) oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson's disease

    Looking at the Trees in the Central Forest: A New Pallidal-Striatal Cell Type

    Get PDF
    The glopus pallidus is a central nucleus of the basal ganglia, pivotal to their function in health and disease. In this issue of Neuron, Mallet et al. (2012) reveal that this structure is more diverse than previously thought, and identify a novel cell type that projects from pallidum to striatum providing massive GABAergic innervation. These findings invite new views on basal ganglia processing

    High on Habits

    Get PDF
    The neural circuits involved in learning and executing goal-directed actions, which are governed by action-outcome contingencies and sensitive to changes in the expected value of the outcome, have been shown to be different from those mediating habits, which are less dependent on action-outcome relations and changes in outcome value. Extended training, different reinforcement schedules, and substances of abuse have been shown to induce a shift from goal-directed performance to habitual performance. This shift can be beneficial in everyday life, but can also lead to loss of voluntary control and compulsive behavior, namely during drug seeking in addiction. Although the brain circuits underlying habit formation are becoming clearer, the molecular mechanisms underlying habit formation are still not understood. Here, we review a recent study where Hilario et al. (2007) established behavioral procedures to investigate habit formation in mice in order to investigate the molecular mechanisms underlying habit formation. Using those procedures, and a combination of genetic and pharmacological tools, the authors showed that endocannabinoid signaling is critical for habit formation

    Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Get PDF
    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first study analyzing the expression of target genes in marine plants living near natural CO2 vents. Our results call for contention to the general claim of seagrasses as "winners" in a high-CO2 world, based on observations near volcanic vents. Careful consideration of factors that are at play in natural vents sites other than CO2 and acidification is required. This study also constitutes a first step for using stress-related genes as indicators of environmental pressures in a changing ocean.project HighGrass "High-CO2 effects on seagrass photosynthetic ecophysiology" [PTDC/MAREST/3687/2012]; MIUR Italian flagship project RITMARE; ESF COST Action "Seagrass Productivity: from genes to ecosystem management

    Temporally Precise Cell-Specific Coherence Develops in Corticostriatal Networks during Learning

    Get PDF
    SummaryIt has been postulated that selective temporal coordination between neurons and development of functional neuronal assemblies are fundamental for brain function and behavior. Still, there is little evidence that functionally relevant coordination emerges preferentially in neuronal assemblies directly controlling behavioral output. We investigated coherence between primary motor cortex and the dorsal striatum as rats learn an abstract operant task. Striking coherence developed between these regions during learning. Interestingly, coherence was selectively increased in cells controlling behavioral output relative to adjacent cells. Furthermore, the temporal offset of these interactions aligned closely with corticostriatal conduction delays, demonstrating highly precise timing. Spikes from either region were followed by a consistent phase in the other, suggesting that network feedback reinforces coherence. Together, these results demonstrate that temporally precise coherence develops during learning specifically in output-relevant neuronal populations and further suggest that correlations in oscillatory activity serve to synchronize widespread brain networks to produce behavior

    Implementação da metodologia Quick ChangeOver numa linha de montagem final de auto-rádios : para além da técnica SMED

    Get PDF
    Este artigo apresenta alguns resultados de um projecto de implementação da metodologia Quick Changeover (QCO) nas linhas de montagem final de uma empresa de auto-rádios. Esta implementação incluiu a aplicação de Single Minute Exchange Die (SMED) e o desenvolvimento de sistemáticas de trabalho normalizado, tanto numa linha de montagem final como nas áreas adjacentes. Os resultados da implementação do SMED e das sistemáticas são apresentados. Na fase final do trabalho constatou-se que, em alguns casos, os tempos de mudança foram reduzidos para tempos inferiores ao esperado
    corecore