6 research outputs found

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO emissions from current VCE losses are estimated at 2.1-3.1 Tg CO-e yr, increasing annual CO emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    © 2019, The Author(s). Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Impact of mooring activities on carbon stocks in seagrass meadows [dataset]

    No full text
    The database compiles published data (in Serrano et al. 2016, Scientific Reports, in press) on biogeochemical characteristics (density, organic carbon, calcium carbonate, stable carbon isotopes and sediment grain size) of sediments underneath seagrass meadows and adjacent un-vegetated patches after mooring disturbances in Rottnest Island (Perth, Western Australia). The dataset compiles data on biogeochemical sediment characteristics for a total of 16 cores, 50 cm-long (4 cores from seagrass meadows and 4 cores from adjacent bare sediments at Thompson Bay, and 4 cores from seagrass meadows and 4 cores from adjacent bare sediments at Stark Bay). Enquiries about the dataset may be sent to Oscar Serrano [email protected]

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    No full text
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO emissions from current VCE losses are estimated at 2.1-3.1 Tg CO-e yr, increasing annual CO emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions
    corecore