16 research outputs found

    Drosophila as a model system to unravel the layers of innate immunity to infection

    Get PDF
    Innate immunity relies entirely upon germ-line encoded receptors, signalling components and effector molecules for the recognition and elimination of invading pathogens. The fruit fly Drosophila melanogaster with its powerful collection of genetic and genomic tools has been the model of choice to develop ideas about innate immunity and host–pathogen interactions. Here, we review current research in the field, encompassing all layers of defence from the role of the microbiota to systemic immune activation, and attempt to speculate on future directions and open questions

    Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein

    Get PDF
    BACKGROUND: The largest open reading frame in the Saccharomyces genome encodes midasin (MDN1p, YLR106p), an AAA ATPase of 560 kDa that is essential for cell viability. Orthologs of midasin have been identified in the genome projects for Drosophila, Arabidopsis, and Schizosaccharomyces pombe. RESULTS: Midasin is present as a single-copy gene encoding a well-conserved protein of ~600 kDa in all eukaryotes for which data are available. In humans, the gene maps to 6q15 and encodes a predicted protein of 5596 residues (632 kDa). Sequence alignments of midasin from humans, yeast, Giardia and Encephalitozoon indicate that its domain structure comprises an N-terminal domain (35 kDa), followed by an AAA domain containing six tandem AAA protomers (~30 kDa each), a linker domain (260 kDa), an acidic domain (~70 kDa) containing 35–40% aspartate and glutamate, and a carboxy-terminal M-domain (30 kDa) that possesses MIDAS sequence motifs and is homologous to the I-domain of integrins. Expression of hemagglutamin-tagged midasin in yeast demonstrates a polypeptide of the anticipated size that is localized principally in the nucleus. CONCLUSIONS: The highly conserved structure of midasin in eukaryotes, taken in conjunction with its nuclear localization in yeast, suggests that midasin may function as a nuclear chaperone and be involved in the assembly/disassembly of macromolecular complexes in the nucleus. The AAA domain of midasin is evolutionarily related to that of dynein, but it appears to lack a microtubule-binding site

    The E1A-Associated p400 Protein Modulates Cell Fate Decisions by the Regulation of ROS Homeostasis

    Get PDF
    The p400 E1A-associated protein, which mediates H2A.Z incorporation at specific promoters, plays a major role in cell fate decisions: it promotes cell cycle progression and inhibits induction of apoptosis or senescence. Here, we show that p400 expression is required for the correct control of ROS metabolism. Depletion of p400 indeed increases intracellular ROS levels and causes the appearance of DNA damage, indicating that p400 maintains oxidative stress below a threshold at which DNA damages occur. Suppression of the DNA damage response using a siRNA against ATM inhibits the effects of p400 on cell cycle progression, apoptosis, or senescence, demonstrating the importance of ATM–dependent DDR pathways in cell fates control by p400. Finally, we show that these effects of p400 are dependent on direct transcriptional regulation of specific promoters and may also involve a positive feedback loop between oxidative stress and DNA breaks since we found that persistent DNA breaks are sufficient to increase ROS levels. Altogether, our results uncover an unexpected link between p400 and ROS metabolism and allow deciphering the molecular mechanisms largely responsible for cell proliferation control by p400

    PRC1 and PRC2 Are Not Required for Targeting of H2A.Z to Developmental Genes in Embryonic Stem Cells

    Get PDF
    The essential histone variant H2A.Z localises to both active and silent chromatin sites. In embryonic stem cells (ESCs), H2A.Z is also reported to co-localise with polycomb repressive complex 2 (PRC2) at developmentally silenced genes. The mechanism of H2A.Z targeting is not clear, but a role for the PRC2 component Suz12 has been suggested. Given this association, we wished to determine if polycomb functionally directs H2A.Z incorporation in ESCs. We demonstrate that the PRC1 component Ring1B interacts with multiple complexes in ESCs. Moreover, we show that although the genomic distribution of H2A.Z co-localises with PRC2, Ring1B and with the presence of CpG islands, H2A.Z still blankets polycomb target loci in the absence of Suz12, Eed (PRC2) or Ring1B (PRC1). Therefore we conclude that H2A.Z accumulates at developmentally silenced genes in ESCs in a polycomb independent manner

    RSF Governs Silent Chromatin Formation via Histone H2Av Replacement

    Get PDF
    Human remodeling and spacing factor (RSF) consists of a heterodimer of Rsf-1 and hSNF2H, a counterpart of Drosophila ISWI. RSF possesses not only chromatin remodeling activity but also chromatin assembly activity in vitro. While no other single factor can execute the same activities as RSF, the biological significance of RSF remained unknown. To investigate the in vivo function of RSF, we generated a mutant allele of Drosophila Rsf-1 (dRsf-1). The dRsf-1 mutant behaved as a dominant suppressor of position effect variegation. In dRsf-1 mutant, the levels of histone H3K9 dimethylation and histone H2A variant H2Av were significantly reduced in an euchromatic region juxtaposed with heterochromatin. Furthermore, using both genetic and biochemical approaches, we demonstrate that dRsf-1 interacts with H2Av and the H2Av-exchanging machinery Tip60 complex. These results suggest that RSF contributes to histone H2Av replacement in the pathway of silent chromatin formation

    The Histone Variant His2Av is Required for Adult Stem Cell Maintenance in the Drosophila Testis

    Get PDF
    Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages
    corecore