138 research outputs found

    Application Of Continuous Positive Airway Pressure In The Delivery Room: A Multicenter Randomized Clinical Trial.

    Get PDF
    This study evaluated whether the use of continuous positive airway pressure (CPAP) in the delivery room alters the need for mechanical ventilation and surfactant during the first 5 days of life and modifies the incidence of respiratory morbidity and mortality during the hospital stay. The study was a multicenter randomized clinical trial conducted in five public university hospitals in Brazil, from June 2008 to December 2009. Participants were 197 infants with birth weight of 1000-1500 g and without major birth defects. They were treated according to the guidelines of the American Academy of Pediatrics (APP). Infants not intubated or extubated less than 15 min after birth were randomized for two treatments, routine or CPAP, and were followed until hospital discharge. The routine (n=99) and CPAP (n=98) infants studied presented no statistically significant differences regarding birth characteristics, complications during the prenatal period, the need for mechanical ventilation during the first 5 days of life (19.2 vs 23.4%, P=0.50), use of surfactant (18.2 vs 17.3% P=0.92), or respiratory morbidity and mortality until discharge. The CPAP group required a greater number of doses of surfactant (1.5 vs 1.0, P=0.02). When CPAP was applied to the routine group, it was installed within a median time of 30 min. We found that CPAP applied less than 15 min after birth was not able to reduce the need for ventilator support and was associated with a higher number of doses of surfactant when compared to CPAP applied as clinically indicated within a median time of 30 min.47259-6

    Poor birth weight recovery among low birth weight/preterm infants following hospital discharge in Kampala, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Healthy infants typically regain their birth weight by 21 days of age; however, failure to do so may be due to medical, nutritional or environmental factors. Globally, the incidence of low birth weight deliveries is high, but few studies have assessed the postnatal weight changes in this category of infants, especially in Africa. The aim was to determine what proportion of LBW infants had not regained their birth weight by 21 days of age after discharge from the Special Care Unit of Mulago hospital, Kampala.</p> <p>Methods</p> <p>A cross sectional study was conducted assessing weight recovery of 235 LBW infants attending the Kangaroo Clinic in the Special Care Unit of Mulago Hospital between January and April 2010. Infants aged 21 days with a documented birth weight and whose mothers gave consent to participate were included in the study. Baseline information was collected on demographic characteristics, history on pregnancy, delivery and postnatal outcome through interviews. Pertinent infant information like gestation age, diagnosis and management was obtained from the medical records and summarized in the case report forms.</p> <p>Results</p> <p>Of the 235 LBW infants, 113 (48.1%) had not regained their birth weight by 21 days. Duration of hospitalization for more than 7 days (AOR: 4.2; 95% CI: 2.3 - 7.6; p value < 0.001) and initiation of the first feed after 48 hours (AOR: 1.9; 95% CI 1.1 - 3.4 p value 0.034) were independently associated with failure to regain birth weight. Maternal factors and the infant's physical examination findings were not significantly associated with failure to regain birth weight by 21 days of age.</p> <p>Conclusion</p> <p>Failure to regain birth weight among LBW infants by 21 days of age is a common problem in Mulago Hospital occurring in almost half of the neonates attending the Kangaroo clinic. Currently, the burden of morbidity in this group of high-risk infants is undetected and unaddressed in many developing countries. Measures for consideration to improve care of these infants would include; discharge after regaining birth weight and use of total parenteral nutrition. However, due to the pressure of space, keeping the baby and mother is not feasible at the moment hence the need for a strong community system to boost care of the infant. Close networking with support groups within the child's environment could help alleviate this problem.</p

    OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes

    Get PDF
    Mutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA ‘plus’ phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability

    Factors Associated with Height Catch-Up and Catch-Down Growth Among Schoolchildren

    Get PDF
    In developed countries, children with intrauterine growth restriction (IUGR) or born preterm (PT) tend to achieve catch-up growth. There is little information about height catch-up in developing countries and about height catch-down in both developed and developing countries. We studied the effect of IUGR and PT birth on height catch-up and catch-down growth of children from two cohorts of liveborn singletons. Data from 1,463 children was collected at birth and at school age in Ribeirão Preto (RP), a more developed city, and in São Luís (SL), a less developed city. A change in z-score between schoolchild height z-score and birth length z-score≥0.67 was considered catch-up; a change in z-score≤−0.67 indicated catch-down growth. The explanatory variables were: appropriate weight for gestational age/PT birth in four categories: term children without IUGR (normal), IUGR only (term with IUGR), PT only (preterm without IUGR) and preterm with IUGR; infant's sex; maternal parity, age, schooling and marital status; occupation of family head; family income and neonatal ponderal index (PI). The risk ratio for catch-up and catch-down was estimated by multinomial logistic regression for each city. In RP, preterms without IUGR (RR = 4.13) and thin children (PI<10th percentile, RR = 14.39) had a higher risk of catch-down; catch-up was higher among terms with IUGR (RR = 5.53), preterms with IUGR (RR = 5.36) and children born to primiparous mothers (RR = 1.83). In SL, catch-down was higher among preterms without IUGR (RR = 5.19), girls (RR = 1.52) and children from low-income families (RR = 2.74); the lowest risk of catch-down (RR = 0.27) and the highest risk of catch-up (RR = 3.77) were observed among terms with IUGR. In both cities, terms with IUGR presented height catch-up growth whereas preterms with IUGR only had height catch-up growth in the more affluent setting. Preterms without IUGR presented height catch-down growth, suggesting that a better socioeconomic situation facilitates height catch-up and prevents height catch-down growth

    How to prevent ROP in preterm infants in Indonesia?

    Get PDF
    Background and Aims: Retinopathy of prematurity (ROP) is a severe disease in preterm infants. It is seen more frequently in Low-Middle Income Countries (LMIC) like Indonesia compared to High-Income Countries (HIC). Risk factors for ROP development are -extreme- preterm birth, use of oxygen, neonatal infections, respiratory problems, inadequate nutrition, and blood and exchange transfusions. In this paper, we give an overview of steps that can be taken in LMIC to prevent ROP and provide guidelines for screening and treating ROP. Methods: Based on the literature search and data obtained by us in Indonesia's studies, we propose guidelines for the prevention, screening, and treatment of ROP in preterm infants in LMIC. Results: Prevention of ROP starts before birth with preventing preterm labor, transferring a mother who might deliver <32 weeks to a perinatal center and giving corticosteroids to mothers that might deliver <34 weeks. Newborn resuscitation must be done using room air or, in the case of very preterm infants (<29-32 weeks) by using 30% oxygen. Respiratory problems must be prevented by starting continuous positive airway pressure (CPAP) in all preterm infants <32 weeks and in case of respiratory problems in more mature infants. If needed, the surfactant should be given in a minimally invasive manner, as ROP's lower incidence was found using this technique. The use of oxygen must be strictly regulated with a saturation monitor of 91-95%. Infections must be prevented as much as possible. Both oral and parenteral nutrition should be started in all preterm infants on day one of life with preferably mothers' milk. Blood transfusions can be prevented by reducing the amount of blood needed for laboratory analysis. Discussion: Preterm babies should be born in facilities able to care for them optimally. The use of oxygen must be strictly regulated. ROP screening is mandatory in infants born <34 weeks, and infants who received supplemental oxygen for a prolonged period. In case of progression of ROP, immediate mandatory treatment is required. Conclusion: Concerted action is needed to reduce the incidence of ROP in LMIC. "STOP - R1O2P3" is an acronym that can help implement standard practices in all neonatal intensive care units in LMIC to prevent development and progression
    corecore