44 research outputs found

    Single-step fabrication of thin-film linear variable bandpass filters based on metal-insulator-metal geometry

    Get PDF
    A single-step fabrication method is presented for ultra-thin, linearly variable optical bandpass filters (LVBFs) based on a metal–insulator–metal arrangement using modified evaporation deposition techniques. This alternate process methodology offers reduced complexity and cost in comparison to conventional techniques for fabricating LVBFs. We are able to achieve linear variation of insulator thickness across a sample, by adjusting the geometrical parameters of a typical physical vapor deposition process. We demonstrate LVBFs with spectral selectivity from 400 to 850 nm based on Ag (25 nm) and MgF2_{2} (75–250 nm). Maximum spectral transmittance is measured at ∼70% with a Q\textit{Q}-factor of ∼20.Engineering and Physical Sciences Research Council (EPSRC) (EP/L015455/1); Cambridge Commonwealth, European and International Trust

    Self-assembled liquid crystalline nanotemplates and their incorporation in dye-sensitised solar cells

    Get PDF
    Liquid junction dye-sensitised solar cells (DSSCs) suffer from solvent evaporation and leakage which limit their large-scale production. Here, we have prepared DSSC using a simple and cheap fabrication process with improved photovoltaic parameters and stability. A binary mixture of Smectic A (SmA) and Nematic Liquid Crystal (NLC) was used to provide a self-assembled template for a polymerisable reactive mesogen LC. The layered structure of SmA combined with a low viscosity NLC forms a polygonal structure that provides an ordered and continuous template for reactive mesogens. Once the reactive mesogen is polymerised under UV light, the SmA:NLC mixture is washed away, resulting in a polymer network template containing nanochannels. We demonstrate the incorporation of these templates into DSSCs and find that DSSCs containing these nanochannels show improved open-circuit voltage (VOC_{OC}) (0.705 V) and short-circuit current (JSC_{SC}) (13.25 mA cm2^{-2}) compared to that of the liquid electrolyte (VOC_{OC} = 0.694 V and JSC = 10.46 mA cm2^{-2}). The highest obtained power conversion efficiency with Sm-PE was 5.94% which is higher than that of the reference solar cell (5.51%). These can be attributed to the improved ionic conductivity and ionic diffusion of Sm-PE where the presence of the nanochannels aided the ionic conduction in the polymer electrolyte. In addition, it is hypothesized that the light scattering effect of the polymerised reactive mesogen also contributed to the improved performance of the photovoltaic devices. This finding is important because it is known fact that when a polymer is added to liquid electrolyte, the ionic conductivity will decrease although the stability is improved.A.A.K. and G.R. would like to thank the Cambridge Commonwealth Trust for financial support. A.A.K. would also like to thank the HEC (Pakistan) for financial support. C.W would like to thank EPSRC Integrated Photonics and Electronics Systems funding

    Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices

    Get PDF
    In a model of a gate-patterned quantum device it is important to choose the correct electrostatic boundary conditions (BCs) in order to match experiment. In this study, we model gated-patterned devices in doped and undoped GaAs heterostructures for a variety of BCs. The best match is obtained for an unconstrained surface between the gates, with a dielectric region above it and a frozen layer of surface charge, together with a very deep back boundary. Experimentally, we find a 0.2V offset in pinch-off characteristics of one-dimensional channels in a doped heterostructure before and after etching off a ZnO overlayer, as predicted by the model. Also, we observe a clear quantised current driven by a surface acoustic wave through a lateral induced n-i-n junction in an undoped heterostructure. In the model, the ability to pump electrons in this type of device is highly sensitive to the back BC. Using the improved boundary conditions, it is straightforward to model quantum devices quite accurately using standard software

    Nanofabrication of Conductive Metallic Structures on Elastomeric Materials.

    Get PDF
    Existing techniques for patterning metallic structures on elastomers are limited in terms of resolution, yield and scalability. The primary constraint is the incompatibility of their physical properties with conventional cleanroom techniques. We demonstrate a reliable fabrication strategy to transfer high resolution metallic structures of <500 nm in dimension on elastomers. The proposed method consists of producing a metallic pattern using conventional lithographic techniques on silicon coated with a thin sacrificial aluminium layer. Subsequent wet etching of the sacrificial layer releases the elastomer with the embedded metallic pattern. Using this method, a nano-resistor with minimum feature size of 400 nm is fabricated on polydimethylsiloxane (PDMS) and applied in gas sensing. Adsorption of solvents in the PDMS causes swelling and increases the device resistance, which therefore enables the detection of volatile organic compounds (VOCs). Sensitivity to chloroform and toluene vapor with a rapid response (~30 s) and recovery (~200 s) is demonstrated using this PDMS nano-resistor at room temperature

    Gravimetric sensors operating at 1.1 GHz based on inclined c-axis ZnO grown on textured Al electrodes

    Get PDF
    Shear mode solidly mounted resonators (SMRs) are fabricated using an inclined c-axis ZnO grown on a rough Al electrode. The roughness of the Al surface is controlled by changing the substrate temperature during the deposition process to promote the growth of inclined ZnO microcrystals. The optimum substrate temperature to obtain homogeneously inclined c-axis grains in ZnO films is achieved by depositing Al at 100 °C with a surface roughness ~9.2 nm, which caused an inclination angle of ~25° of the ZnO c-axis with respect to the surface normal. Shear mode devices with quality-factors at resonance, Q r and effective electromechanical coupling factors, [Formula: see text], as high as 180 and 3.4% are respectively measured. Mass sensitivities, S m of (4.9 ± 0.1) kHz · cm(2)/ng and temperature coefficient of frequency (TCF) of ~-67 ppm/K are obtained using this shear mode. The performance of the devices as viscosity sensors and biosensors is demonstrated by determining the frequency shifts of water-ethanol mixtures and detection of Rabbit immunoglobin G (IgG) whole molecule (H&L) respectively.The research leading to these results has received funding from the European Community’s Horizon 2020 Programme under Grant Agreement No. SPIRE-01-2014-636820, the IC1208 Cost action, and from the Ministerio de Economía y Competitividad del Gobierno de España through the project MAT2013-45957-R. Financial support from these institutions is therefore gratefully acknowledged. G.R. also wishes to acknowledge funding from the Cambridge Commonwealth, European and International Trust

    Design, Modeling and Simulation of a Capacitive Size-Discriminating Particulate Matter Sensor for Personal Air Quality Monitoring

    No full text
    We applied the well-established thermophoretic effect to air quality monitoring. We developed a novel method for particulate matter distribution analysis in an in-flow capacitive detection device. The proposed Multiphysics model combines fluid dynamics of particulate matter influenced by thermophoresis with electric field variations in the active volume space of a charged coplanar interdigitated electrodes. The model allows to anticipate the effect of thermophoresis in separating particles of PM10 and PM2.5 size ranges into different streams from a single particle-entrained flow and provides an estimated value of sensitivity for capacitive PM detection. The model is described through the Finite Element Method from the main equations to the simulation run using COMSOL Multiphysics and validated by comparing the results with literature. We obtained high sensor sensitivity of up to 0.48 zF/particle as far as 18 μm18~\mu \text{m} from coplanar electrode surface using the Computational Fluid Dynamics and Heat Transfer, Electrostatics and Particle tracing modules. We compare results of the simulations for different particle positions, electrode width and inter-electrode spacing, then we use the results to identify optimal design parameters for a novel architecture of a PM detection system with high sensitivity down to PM2.5 single particles and embedded particle size discrimination by using 10 μm10~\mu \text{m} electrode width and \mu \text{m}$ inter-electrode spacing
    corecore