354 research outputs found

    Transfer print techniques for heterogeneous integration of photonic components

    Get PDF
    The essential functionality of photonic and electronic devices is contained in thin surface layers leaving the substrate often to play primarily a mechanical role. Layer transfer of optimised devices or materials and their heterogeneous integration is thus a very attractive strategy to realise high performance, low-cost circuits for a wide variety of new applications. Additionally, new device configurations can be achieved that could not otherwise be realised. A range of layer transfer methods have been developed over the years including epitaxial lift-off and wafer bonding with substrate removal. Recently, a new technique called transfer printing has been introduced which allows manipulation of small and thin materials along with devices on a massively parallel scale with micron scale placement accuracies to a wide choice of substrates such as silicon, glass, ceramic, metal and polymer. Thus, the co-integration of electronics with photonic devices made from compound semiconductors, silicon, polymer and new 2D materials is now achievable in a practical and scalable method. This is leading to exciting possibilities in microassembly. We review some of the recent developments in layer transfer and particularly the use of the transfer print technology for enabling active photonic devices on rigid and flexible foreign substrates

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether

    Flavor in Minimal Conformal Technicolor

    Full text link
    We construct a complete, realistic, and natural UV completion of minimal conformal technicolor that explains the origin of quark and lepton masses and mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The exchange of heavy scalar doublets generates higher-dimension interactions between technifermions and quarks and leptons that give rise to quark and lepton masses at the TeV scale. Obtaining a sufficiently large top quark mass requires strong dynamics at the supersymmetry breaking scale in both the top and technicolor sectors. This is natural if the theory above the supersymmetry breaking also has strong conformal dynamics. We present two models in which the strong top dynamics is realized in different ways. In both models, constraints from flavor-changing effects can be easily satisfied. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino. We argue that this light gaugino is a general consequence of conformal technicolor embedded into a supersymmetric theory. If the gaugino has mass below the TeV scale it will give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde

    Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings

    Get PDF
    In this study, we analyze the processing of low-frequency sounds in the cochlear apex through responses of auditory nerve fibers (ANFs) that innervate the apex. Single tones and irregularly spaced tone complexes were used to evoke ANF responses in Mongolian gerbil. The spike arrival times were analyzed in terms of phase locking, peripheral frequency selectivity, group delays, and the nonlinear effects of sound pressure level (SPL). Phase locking to single tones was similar to that in cat. Vector strength was maximal for stimulus frequencies around 500 Hz, decreased above 1 kHz, and became insignificant above 4 to 5 kHz. We used the responses to tone complexes to determine amplitude and phase curves of ANFs having a characteristic frequency (CF) below 5 kHz. With increasing CF, amplitude curves gradually changed from broadly tuned and asymmetric with a steep low-frequency flank to more sharply tuned and asymmetric with a steep high-frequency flank. Over the same CF range, phase curves gradually changed from a concave-upward shape to a concave-downward shape. Phase curves consisted of two or three approximately straight segments. Group delay was analyzed separately for these segments. Generally, the largest group delay was observed near CF. With increasing SPL, most amplitude curves broadened, sometimes accompanied by a downward shift of best frequency, and group delay changed along the entire range of stimulus frequencies. We observed considerable across-ANF variation in the effects of SPL on both amplitude and phase. Overall, our data suggest that mechanical responses in the apex of the cochlea are considerably nonlinear and that these nonlinearities are of a different character than those known from the base of the cochlea

    Minimal Conformal Technicolor and Precision Electroweak Tests

    Get PDF
    We study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) -> Sp(4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. The top quark is elementary, and the top and electroweak gauge loop contributions to the Higgs mass are cut off entirely by Higgs compositeness. In particular, the model requires no top partners and no "little Higgs" mechanism. A nontrivial vacuum alignment results from the interplay of the top loop and technifermion mass terms. The composite Higgs mass is completely determined by the top loop, in the sense that m_h/m_t is independent of the vacuum alignment and is computable by a strong-coupling calculation. There is an additional composite pseudoscalar A with mass larger than m_h and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. Corrections to Z -> bb and the T parameter from the top sector are suppressed by the enhanced Sp(4) custodial symmetry. Even assuming that the strong contribution to the S parameter is positive and usuppressed, a good electroweak fit can be obtained for v/f ~ 0.25, where v and f are the electroweak and chiral symmetry breaking scales respectively. This requires fine tuning at the 10% level.Comment: 34 pages, 4 figures; v2: updated precision electroweak fi

    Surface electromyography pattern of human swallowing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The physiology of swallowing is characterized by a complex and coordinated activation of many stomatognathic, pharyngeal, and laryngeal muscles. Kinetics and electromyographic studies have widely investigated the pharyngeal and laryngeal pattern of deglutition in order to point out the differences between normal and dysphagic people. In the dental field, muscular activation during swallowing is believed to be the cause of malocclusion.</p> <p>Despite the clinical importance given to spontaneous swallowing, few physiologic works have studied stomatognathic muscular activation and mandibular movement during spontaneous saliva swallowing.</p> <p>The aim of our study was to investigate the activity patterns of the mandibular elevator muscles (masseter and anterior temporalis muscles), the submental muscles, and the neck muscles (sternocleidomastoid muscles) in healthy people during spontaneous swallowing of saliva and to relate the muscular activities to mandibular movement.</p> <p>Methods</p> <p>The spontaneous swallowing of saliva of 111 healthy individuals was analyzed using surface electromyography (SEMG) and a computerized kinesiography of mandibular movement.</p> <p>Results</p> <p>Fifty-seven of 111 patients swallowed without occlusal contact (SNOC) and 54 individuals had occlusal contact (SOC). The sternocleidomastoid muscles showed a slight, but constant activation during swallowing. The SEMG of the submental and sternocleidomastoid muscles showed no differences between the two groups. The SEMG of the anterior temporalis and masseter muscles showed significant differences (p < 0.0001). The duration of swallowing was significantly higher in the SNOC subjects. Gender and age were not related to electromyographic activation. Healthy SOC and SNOC behaved in different ways.</p> <p>Conclusion</p> <p>The data suggest that there is not a single "normal" or "typical" pattern for spontaneous saliva swallowing. The polygraph seemed a valuable, simple, non-invasive and reliable tool to study the physiology of swallowing.</p

    Stabilization of ribozyme-like cis-noncoding rRNAs induces apoptotic and nonapoptotic death in lung cells

    Get PDF
    Bidirectional non-protein-coding RNAs are ubiquitously transcribed from the genome. Convergent sense and antisense transcripts may regulate each other. Here, we examined the convergent cis-noncoding rRNAs (nc-rRNAs) in A5 and E9 lung cancer models. Sense nc-rRNAs extending from rDNA intergenic region to internal transcribed spacer of around 10 kb in length were identified. nc-rRNAs in sense direction exhibited in vitro characteristics of ribozymes, namely, degradation upon incubation with MgCl2 and stabilization by complementary oligonucleotides. Detection of endogenous cleavage-ligation products carrying internal deletion of hundreds to thousands nucleotides by massively parallel sequencing confirmed the catalytic properties. Transfection of oligonucleotides pairing with antisense nc-rRNAs stabilized both target and complementary transcripts, perturbed rRNA biogenesis, and induced massive cell death via apoptotic and/or nonapoptotic mechanisms depending on cell type and treatment. Oligonucleotides targeting cellular sense transcripts are less responsive. Spontaneously detached cells, though rare, also showed accumulation of nc-rRNAs and perturbation of rRNA biogenesis. Direct participation of nc-rRNAs in apoptotic and nonapoptotic death was demonstrated by transfection of synthetic nc-rRNAs encompassing the rDNA promoter. In sum, convergent cis-nc-rRNAs follow a feed-forward mechanism to regulate each other and rRNA biogenesis. This opens an opportunity to disrupt rRNA biogenesis, commonly upregulated in cancers, via inhibition of ribozyme-like activities in nc-rRNAs

    Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) Into Clinical Practice

    Get PDF
    Objective: Diagnosis is a cornerstone of clinical practice for mental health care providers, yet traditional diagnostic systems have well-known shortcomings, including inadequate reliability, high comorbidity, and marked within-diagnosis heterogeneity. The Hierarchical Taxonomy of Psychopathology (HiTOP) is a data-driven, hierarchically based alternative to traditional classifications that conceptualizes psychopathology as a set of dimensions organized into increasingly broad, transdiagnostic spectra. Prior work has shown that using a dimensional approach improves reliability and validity, but translating a model like HiTOP into a workable system that is useful for health care providers remains a major challenge. / Method: The present work outlines the HiTOP model and describes the core principles to guide its integration into clinical practice. Results: Potential advantages and limitations of the HiTOP model for clinical utility are reviewed, including with respect to case conceptualization and treatment planning. A HiTOP approach to practice is illustrated and contrasted with an approach based on traditional nosology. Common barriers to using HiTOP in real-world health care settings and solutions to these barriers are discussed. / Conclusions: HiTOP represents a viable alternative to classifying mental illness that can be integrated into practice today, although research is needed to further establish its utility

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    corecore