43 research outputs found

    The impact of irrigation on the quality of drainage water in a new irrigation district

    Get PDF
    [EN] The water quality of two agricultural drainage systems was monitored over two irrigation seasons in order to determine the sustainability of a new area of irrigated land (the Algerri-Balager irrigation district) located in the northeast of Spain. The average electrical conductivity of the drainage water was around 4dS·m-1, and the waters were enriched with boron, phosphorous and nitrate. Drainage represented 17% of total applied irrigation water (measured leached fraction) and is considered necessary to minimize the risk of soil salinization in semiarid environments. The most common ions in the drainage waters were magnesium, sulphate, and calcium and others related with dissolved soil minerals present in the area. The presence of Fe, Cu, Mn, Zn and pesticides was negligible. The information provided by this research was very useful for the irrigation district, and it’s transferable to other irrigation districts, as it could help to improve agricultural practices and be used to control the quality and quantity of irrigation drainage.[ES] La calidad del agua de dos sistemas de drenaje agrícola fue monitorizado en dos temporadas de riego para determinar la sostenibilidad de una zona recientemente transformada de secano a regadío y gestionada por la Comunidad de Regantes del Canal de Algerri-Balaguer, en el Noreste de España. La conductividad eléctrica media estuvo alrededor de los 4 dSm-1, y las aguas se enriquecieron con boro, fósforo y nitratos. El drenaje representó un 17% del total de agua de riego aplicada (fracción medida de lavado) y se considera necesario para minimizar el riesgo de salinización del suelo en ambientes semiáridos. Los iones más comunes presentes en las aguas de drenaje fueron el magnesio, el sulfato, y el calcio y otros relacionados con la disolución de minerales presentes en la zona de estudio. La presencia de Fe, Cu, Mg, Zn y fitosanitarios fue insignificante. La información que proporcionó el estudio fue muy interesante para la Comunidad de Regantes, y los aspectos metodológicos pueden ser aplicados en otras comunidades de regantes, ya que podría ayudar a mejorar las prácticas agrícolas y utilizarse para controlar la calidad y cantidad del agua de drenajeLos autores quieren agradecer al Sr. Antonio Enjuanes y al Sr. Joan Anglès (Departament d’Agricultura, Ramaderia, Pesca i Alimentació), al Sr. Francesc Mirada, presidente de la comunidad de regantes (en el momento de realizarse el trabajo de campo), al Sr. Antoni Costa presidente del sindicato de regantes de la Comunidad de Regantes, al Sr. Ramón Codina, técnico de la Comunidad de Regantes, y también a los estudiantes de la Universidad de Lleida que contribuyeron al primer año del proyecto (Sr. Xavier Farré y Sr. Albert Casals). Este trabajo ha sido financiado por el convenio de colaboración entre el Departament d’Agricultura, Ramaderia, Pesca i Alimentació de la Generalitat de Catalunya y la Universidad de Lleida (contratos C06027 y C08025)Villar Mir, J.; Pascual, M.; Rufat, J.; Villar, P. (2015). El impacto del riego en la calidad del agua de drenaje en una nueva zona regable. Ingeniería del Agua. 19(4):241-253. https://doi.org/10.4995/ia.2015.4113SWORD241253194Abrahao, R., Causapé, J., García-Garizábal, I., Merchán, D. (2011). Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain). Agricultural Water Management, 102(1), 105-112. doi:10.1016/j.agwat.2011.10.011Agència Catalana de l'Aigua. (2008). Water in Catalonia: diagnosis and proposed actions. Catalan Water Agency, Generalitat de Catalunya.Ascaso, E., Boixadera, J., Olarieta, J.R. (1991). Detailed Soil Survey Map of Catalonia of the irrigated area by Algerri-Balaguer Canal (La Noguera) (1:25000). Departament d'Agricultura, Alimentació i Acció Rural. Generalitat de Catalunya.Ayers, R.S., Westcot, D.W. (1985). Water quality for agriculture. FAO Irrig. Drain. Pap. 29 rev. 1; Food and Agricultura Organization of the United Nations, Rome.Barros, R., Isidoro, D., Aragüés, R. (2011). Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance. Agricultural Water Management, 98(10), 1569-1576.California Department of Transportation (2011). Highway design manual. Chapter 850 Physical Standards. Disponible en http://www.dot.ca.gov/hq/oppd/hdm/pdf/english/chp0850.pdf (12 febrero 2014)Causapé, J. (2009a). Agro-environmental evaluation of irrigation land. I. Water use in Bardenas Irrigation District (Spain). Agricultural Water Management, 96(2), 179-187. doi:10.1016/j.agwat.2008.08.004Causapé, J. (2009b). Agro-environmental evaluation of irrigation land. II. Pollution induced by Bardenas Irrigation District (Spain). Agricultural Water Management, 96(2), 188-194.Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327/1.Dougherty, T.C., Hall, A.W., Wallingford, H.R. (1995). Environmental impact assessment of irrigation and drainage projects. Irrigation and drainage paper 53, Food and Agriculture Organization of the United Nations, Rome.Durand, P., Neal, C., Lelong, F. (1992). Anthropogenic and natural contributions to the rainfall chemistry of a mountainous area in the Cevennes National Park (Mont-Lozere, southern France) Journal of Hydrology, 130, 71-85. doi:10.1016/0022-1694(92)90104-4EC Directive Relating to the Quality of Water Intended for Human Consumption 1982, 80/778/EEC, Office for Official Publications of the European Communities, 2 rue Mercier, L-2985 Luxembourg.Emmerich, W.E. (1990). Precipitation nutrient inputs in semiarid environments. Journal of Environmental Quality, 19(3), 621-624. doi:10.2134/jeq1990.00472425001900030044xEuropean Commission. (2005). Soil Atlas of Europe. European Soil Bureau Network. 128 pp.Fernández-Cirelli, A., Arumí, J.L., Rivera, D., Boochs, P.W. (2009). Environmental effects of irrigation in arid and semi-arid regions. Review. Chilean Journal of Agricultural Research, 69(supl. 1), 27-40.Gali, R.K., Soupi, M.L., Helmers, M.J. (2012). Electrical conductivity as a tool to estimate chemical properties of drainage water quality in the Des Moines Lobe, Iowa. Paper number 12-1338083. ASABAE conference Presentation. ASABAE Annual Int. Meeting, Dallas, Texas.Grattan, S.R. (2002). Irrigation water salinity and crop production. Water quality fact sheet. Division of Agriculture and Natural Resources. Pub. 8066. University of California.Grismer, M.E. (1993). Subsurface drainage system design and drain water quality. Journal of Irrigation and Drainage Engineering 119(3), 537-545. doi:10.1061/(ASCE)0733-9437(1993)119:3(537)Institute for European Environmental Policy (IEEE). (2000). The environmental impacts of irrigation in the European Union. A report to the Environment Directorate of the European Commission. Disponible en http://ec.europa.eu/environment/agriculture/pdf/irrigation.pdf (15 febrero2012)Instituto Nacional de Estadística. (2008). Water Statistics and Indicators. Boletín informativo del INE, Madrid.Isidoro, D., Quílez, D., Aragüés, R. (2004). Water balance and irrigation performance analysis: La Violada irrigation district (Spain) as a case study. Agricultural Water Management, 64(2), 123-142. doi:10.1016/S0378-3774(03)00196-3Isla, R., Aragüés, R., Royo, A. (2003). Spatial variability of salt-affected soils in the middle Ebro Valley (Spain) and implications in plant breeding for increase productivity. Euphytica, 134(3), 325-334. doi:10.1023/B:EUPH.0000004988.25257.91Kubáň, P., Reinhardt, M., Müller, B., Hauser. P. (2004). On-site simultaneous determination of anions and cations in drainage water using a flow injection-capillary electrophoresis system with contactless conductivity detection. Journal of Environmental Monitoring, 6, 169-174. doi:10.1039/b316422eLecina, S., Playán, E., Isidoro, D., Dechmim, F., Cuasapé, J., Faci, J.M. (2005). Irrigation evaluation and simulation at the irrigation district V of Bardenas (Spain). Agricultural Water Management, 73(3), 223-245. doi:10.1016/j.agwat.2004.10.007Leeden, van der F., Troise, F.L., Todd, D.K. (1990). The water encyclopaedia. Second Ed. Lewis Publishers, Inc., Chelsea, MI. Letey, J., Hoffman, G.F., Hopmans, J.W., Grattan, S.R., Suarez, D., Corwin, D.L., Oster, J.D., Wu, L., Amrhein, C. (2011). Evaluation of soil leaching requirement guidelines. Review. Agricultural Water Management, 98(4), 502-506. doi:10.1016/j.agwat.2010.08.009Litskas, V., Aschonitis, V.G., Antonopoulos, V.Z. (2010). Water quality in irrigation and drainage networks of Thessalonoki plain in Greece related to land use, water management, and agroecosystem production. Environmental Monitoring and Assessment, 163(1), 347-359. doi:10.1007/s10661-009-0839-3Lucha, P., Gutiérrez, F., Galve, J.P., Guerrero, J. (2012). Geomorphic and stratigraphic evidence of incision-induced halokinetic uplift and dissolution subsidence in transverse drainages crossing the evaporite-cored Barbastro-Balaguer Anticline (Ebro Basin, NE Spain). Geomorphology, 171-172, 154-172. doi:10.1016/j.geomorph.2012.05.015Organization for Economic and Co-operative Development (OECD). (1982). Eutrophication of Waters: Monitoring, assessment and control. Paris, France.Parris, K. (2011). Impact of agriculture on water pollution in OECD countries: recent trends and futures prospects. International Journal of Water Resources Development 27(1), 33-52. doi:10.1080/07900627.2010.531898Polo, M.J., Ordoñez, R., Giráldez, J.V., González, P. (1997). Aporte de nitrógeno efectuado por el agua de lluvia en el área de Córdoba. XV Congreso Nacional de Riegos. Lleida, Spain, Ed. Generalitat de Catalunya, 94-101.Rice, Ch.W., Havlin, J.L., Schepers, J.S. (1995). Rational nitrogen fertilization in intensive cropping systems. Fertilizer Research,42(1-3): 89-97. doi:10.1007/BF00750502Rodríguez-Ochoa, R., Olarieta, J.R., Castañeda, C. (2012). Micromorphology of salt accumulations in soils of north Monegros, Spain: Optical microscopy and SEM. R.M. Poch, M. Casamitjana, M.L. Francis (Eds). Proceedings of the 14th Int. Working Meeting on Soil Micromorphology, University of Lleida, Lleida, Spain, 31-35.Rowe, D., Abdel-Magid, I. (1995). Handbook of wastewater reclamation and reuse. Lewis Publishers, Boca Raton, FL.Stockle, C.O. (2001). Environmental impact of irrigation: a review. Disponible en http://www.swwrc.wsu.edu/newsletter/fall2001/irrimpact2.pdf (12 de enero de 2012).Verwey, P.M.J., Vermeulen, P.D. (2011). Influence of irrigation on the level, salinity and flow of groundwater at Vaalharts Irrigation scheme. Water SA, 37(2), 155-164. doi:10.4314/wsa.v37i2.65861Wriedt, G., Van der Velde, M., Aloe, A., Bouraoui, F. (2009). Estimating irrigation water requirements in Europe. Journal of Hydrology, 373(3-4), 527-544. doi:10.1016/j.jhydrol.2009.05.01

    Burden of liver disease progression in hospitalized patients with type 2 diabetes mellitus

    Get PDF
    BACKGROUND AND AIMS: There are uncertainties on the burden of liver disease in patients with type-2 diabetes (T2D). METHODS: We measured adjusted hazard ratios of liver disease progression to hepatocellular cancer and/or decompensated cirrhosis in a 2010-2020 retrospective, bicentric, longitudinal, cohort of 52,066 hospitalized patients with T2D. RESULTS: Mean age was 64±14 years and 58% were men. Alcohol use disorders accounted for 57% of liver-related complications and were associated with all liver-related risk factors. Non-metabolic liver-related risk factors accounted for 37% of the liver burden. T2D control was not associated with liver disease progression. The incidence (95% confidence interval) of liver-related complications and of competing mortality were 3.9 (3.5-4.3) and 27.8 (26.7-28.9) per 1000 person-years at risk, respectively. The cumulative incidence of liver disease progression exceeded the cumulative incidence of competing mortality only in the presence of a well-identified risk factors of liver disease progression, including alcohol use. The incidence of hepatocellular cancer was 0.3 (95% CI, 0.1-0.5) per 1000 person-year in patients with obesity and it increased with age. The adjusted hazard ratios of liver disease progression were 55.7 (40.5-76.6), 3.5 (2.3-5.2), 8.9 (6.9-11.5), and 1.5 (1.1-2.1), for alcoholic liver disease, alcohol use disorders without alcoholic liver disease, non-metabolic liver-related risk factors, and obesity, respectively. The attributable fractions of alcohol use disorders, non-metabolic liver risk-related risk factors, and obesity to the liver burden were 55%, 14%, and 7%, respectively. CONCLUSIONS: In this analysis of data from two hospital-based cohorts of patients with T2D, alcohol use disorders, rather than obesity, contributed to most of the liver burden. These results suggest that patients with T2D should be advised to drink minimal amounts of alcohol. LAY SUMMARY: • There is uncertainty on the burden of liver-related complications in patients with type-2 diabetes • We studied the risks of liver cancer and complications of liver disease in over 50,000 patients with type-2 diabetes • We found that alcohol was the main factor associated with complications of liver disease • This finding has major implications on the alcohol advice given to patients with type-2 diabetes

    Intensification of Droplet Disintegration for Liquid–Liquid Systems in a Pulsating Flow Type Apparatus by Adding an Inert Gas

    No full text
    Experimental studies have revealed that the introduction of a small amount (0.5% by volume) of permanent and chemically inert gas bubbles leads to the intensification of droplets disintegration in a liquid–liquid system (emulsification) in a pulsating flow type apparatus. The liquids used were water (continuous phase) and oil (dispersed phase) at room temperature, and nitrogen was used as a gas. The gas hold-up φin was varied in the range of 0% to 4%. The volume fraction of the dispersed phase (oil) was 1% with respect to the continuous phase. The size of the oil droplets was determined by microphotographs; at least 600 drops were photographed in each experiment. The optimal gas hold-up in terms of the highest interfacial area (for the studied conditions) was found to be 0.5%, at which value the droplets’ Sauter mean diameter d32 decreased 1.88 times, and the maximum droplet size decreased 1.3 times, compared with the case without gas input. The effect of decreasing the average droplet size d32 upon the injection of an inert gas in the continuous phase disappears at φin ≈ 2%. The pressure loss at φin ≤ 2% within the measurement error remained constant, while at 4%, it increases by only 5.4%. The role of an inert gas is explained by several factors: (i) a redistribution of momentum over the volume of liquid; (ii) the occurrence of microflows near bubbles and drops, which leads to an increase in shear stresses on the surface of the drops; and (iii) gas bubbles act as pseudocavitation bubbles, whereby when they collapse, they break up adjacent droplets

    Gas–Liquid Two-Phase Flow and Heat Transfer without Phase Change in Microfluidic Heat Exchanger

    No full text
    This work presents an experimental study of the possibility of intensifying in microfluidic heat exchangers (MFHE) by creating a two-phase segmented flow (gas–liquid). Measurements of convective heat transfer were carried out using an MFHE, consisting of six channels 1 × 1 mm. Experimental studies have shown that segmented flow makes it possible to increase the Nusselt number of a laminar flow in MFHE up to 1.67 and reduce thermal resistance up to 1.7 times compared to single-phase flow. At the same time, it was found that the intensification of heat exchange by a two-phase flow is observed only for the range of the volume fraction of gas from 10 to 30%. In addition, the calculation of the thermal performance criterion, including both thermal and hydraulic parameters (friction factor), also confirmed the promise of using the Taylor segmented flow as a method for single-phase heat transfer intensifying in microchannels

    El impacto del riego en la calidad del agua de drenaje en una nueva zona regable

    Get PDF
    La calidad del agua de dos sistemas de drenaje agrícola fue monitorizado en dos temporadas de riego para determinar la sostenibilidad de una zona recientemente transformada de secano a regadío y gestionada por la Comunidad de Regantes del Canal de Algerri-Balaguer, en el Noreste de España. La conductividad eléctrica media de las aguas de drenaje estuvo alrededor de los 4 dS·m-1, y las aguas se enriquecieron con boro, fósforo y nitratos. El drenaje representó un 17% del total de agua de riego aplicada (fracción medida de lavado) que puede considerarse necesario para minimizar el riesgo de salinización secundaria del suelo en ambientes semiáridos. Los iones más comunes presentes en las aguas de drenaje fueron el magnesio, el sulfato, y el calcio y otros relacionados con la disolución de minerales presentes en la zona de estudio. La presencia de Fe, Cu, Mg, Zn y fitosanitarios fue insignificante. La información que proporcionó el estudio fue muy interesante para la Comunidad de Regantes, y los aspectos metodológicos pueden ser aplicados en otras comunidades de regantes, ya que podría ayudar a mejorar las prácticas agrícolas y utilizarse para controlar la calidad y cantidad del agua de drenaje.info:eu-repo/semantics/publishedVersio
    corecore