27 research outputs found

    VHF radar measurements in the summer polar mesosphere

    Get PDF
    Measurements in the mesosphere over Andoya/Norway (69 N, 16 E) were carried out using the mobile SOUSY-VHF radar with an extended beam configuration during the MAC/SINE campaign in summer 1987. First results of a 48 h and a 3 h observational period for heights between about 83 and 91 km are presented. Zonal mean winds are characterized by a strong westward flow of up to 50/ms, whereas the equatorward directed meridional component is weaker. The dominating semidiurnal tide has amplitudes up to 30/ms and a vertical wavelength of about 55 km. The diurnal tide is less pronounced. The total upward flux of horizontal momentum takes values of -2 sq m/sq s near 84 km and increases with increasing height, reaching a maximum value of 22 sq m/sqs for both the zonal and meridional components. However, measurements of the horizontal isotropy of the wave field suggest significant anisotropy. The major contribution to the momentum flux is from the 10 min to 1 h period range below about 87 km, and from the 1 to 6 h period range above this height

    VHF radar measurements over Andoya (Northern Norway)

    Get PDF
    The Mobile SOUSY Radar was operated during the MAP/WINE, the MAC/SINE, and MAC/Epsilon campaigns at Andoya in Northern Norway. A comparison between summer and winter results is presented, in particular the generation and development of the scattering regions, the different power spectral densities and the aspect sensitivities which were derived from six different beam directions

    Photons in gapless color-flavor-locked quark matter

    Full text link
    We calculate the Debye and Meissner masses of a gauge boson in a material consisting of two species of massless fermions that form a condensate of Cooper pairs. We perform the calculation as a function of temperature, for the cases of neutral Cooper pairs and charged Cooper pairs, and for a range of parameters including gapped quaisparticles, and ungapped quasiparticles with both quadratic and linear dispersion relations at low energy. Our results are relevant to the behavior of photons and gluons in the gapless color-flavor-locked phase of quark matter. We find that the photon's Meissner mass vanishes, and the Debye mass shows a non-monotonic temperature dependence, and at temperatures of order the pairing gap it drops to a minimum value of order sqrt(alpha) times the quark chemical potential. We confirm previous claims that at zero temperature an imaginary Meissner mass can arise from a charged gapless condensate, and we find that at finite temperature this can also occur for a gapped condensate.Comment: 22 pages, LaTeX; expanded discussion of temperature dependenc

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    On the Low Surface Magnetic Field Structure of Quark Stars

    Full text link
    Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch \cite{H1,H2,H3}, a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. We have also analysed the instability of normal-superconducting interface due to excess accumulation of magnetic flux lines, assuming an extremely slow growth of superconducting phase through a first order bubble nucleation type transition.Comment: 24 pages REVTEX, one .eps figure, psfig.sty is include

    Suspension medium influences interaction of mesenchymal stromal cells with endothelium and pulmonary toxicity after transplantation in mice

    No full text
    Intravenous (i.v.) transplantation and subsequent homing of Mesenchymal Stromal Cells (MSC) may be adversely influenced by their relatively high adhesion capacity and their tendency to aggregate, leading to clogging of capillaries especially in the lungs. We evaluated the ability of murine MSC suspended in EDTA or heparin in buffered saline solution on their spontaneous adhesion to endothelial cells in vitro, under shear stress and their in vivo tolerability after i.v. injection. We show that suspension of MSC in heparin was highly beneficial, avoiding clinical symptoms in 95% of mice, whereas application of MSC suspended in PBS/EDTA or control buffer caused severe pulmonary reactions and partly, death. In vitro studies using parallel plate flow chambers revealed increased adhesion of MSC suspended in PBS/EDTA to endothelial cells compared with MSC in PBS/heparin. These data provide a means to predict and to interfere with toxicity of i.v. transplanted MSC
    corecore