27 research outputs found

    Joint and muscle forces during clenching

    Get PDF

    Biomechanical properties of masticatory balance in cases with RPDs—The influence of preferred and nonpreferred chewing side: A pilot study

    Get PDF
    Objectives Removable partial dentures (RPDs) are inserted with the aim to restore masticatory function. There is however inconsistent evidence supporting the alleged improvements, posterior occlusal contacts being one of the decisive factors. We hypothesized that the distribution of abutment teeth in RPDs influences masticatory performance and functional parameters. To evaluate the masticatory performance and functional parameters in patients with a RPD using a single mathematical parameter (tilting index [TI]) for both jaws that predicts biomechanical behavior on the basis of the distribution of abutment teeth. Materials and Methods Masticatory performance was measured in patients wearing long-time adapted RPDs using the standardized test food optocal, yielding the mean particle size (X50_{50}). Mastication on the preferred and nonpreferred chewing sides was analyzed. Total muscle work (TMW) was calculated using bipolar electromyographic recordings of the masseter and anterior temporalis muscle. Functional parameters were subjected to multiple linear regression analysis including X50_{50} as a dependent variable and functional units (FU), the number of teeth, bite forces, and sagittal and frontal components of TI (TI α and TI β) as independent variables. Results When the preferred chewing side was tested, none of the investigated parameters correlated significantly with X50_{50}. In contrast, chewing on the nonpreferred side was correlated significantly with performance for most variables (p < .05). This means that increased dental support improved chewing performance with RPDs under these conditions. Conclusions In well-adapted RPDs, the distribution of abutment teeth as expressed by the tilting index seems to be of subordinate importance for masticatory performance

    Simulation of the sinus floor elevation

    Get PDF

    Teeth restored using fiber-reinforced posts: in vitro fracture tests and finite element analysis

    No full text
    In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact

    Is mechanical retention for adhesive core build-up needed to restore a vital tooth with a monolithic zirconium crown? : An in vitro study

    No full text
    Purpose: To show the influence of retentive cavity, cavity wall preparation and different luting techniques on the fracture resistance of severely damaged teeth restored with adhesive core build-ups and monolithic zirconium crowns. Methods: Extracted molars were prepared with 2 mm ferrule height and divided into eleven groups (n = 8/group). In nine groups a retentive occlusal cavity with a width and depth of 1 or 2 mm was prepared. Two control groups without a retentive cavity were made. Zirconium crowns were manufactured. 48 copings were cemented with glass-ionomer cement (Ketac Cem), the others (n = 40) with adhesive resin cement (Panavia F 2.0). Artificial ageing was carried out in the following way: n = 88, thermocycling (10,000 cycles, 6° C/60° C), n = 80 chewing simulation (1,200,000 cycles, 64 N). The samples were tested for load at first damage and fracture load with non-axial force. For statistical analysis ANCOVA with post hoc, Bonferroni-adjusted t-test were used ( p ≤ 0.05). Results: No differences between the tested cements were detected. Influence of the cavity wall thickness was significant ( p = 0.001). Mostly, the samples with wall thickness of 2 mm showed better results. Both control groups (no cavity) showed results comparable to study groups with cavity. Conclusions: Retentive cavity is most likely not mandatory. However, if prepared, the cavity wall thickness is of higher importance than cavity depth. Glass-ionomer and adhesive resin cement are comparable for use with zirconia crowns
    corecore