96 research outputs found

    Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae)

    Get PDF
    International audienceTension wood of Laetia procera (Poepp.) Eichl. (Flacourtiaceae), a neo-tropical forest species, shows a peculiar secondary wall structure, with an alternance of thick and thin layers, while opposite wood of this species has a typical secondary wall structure (S1 + S2 + S3). Samples for the study of microstructural properties were collected upon the estimation of growth stresses in the living tree, in order to analyze the correlation of the former with the latter. Investigation using optical microscopy, scanning electron microscopy and UV microspectrophotometry allowed the description of the anatomy, ultra-structure and chemistry of this peculiar polylaminate secondary wall. In the thick layers, cellulose microfibril angle is very low (i.e., microfibril orientation is close to fibre axis) and cellulose microfibrils are well organized and parallel to each other. In the thin layers, microfibrils (only observable in the inner layer) are less organized and are oriented with a large angle relative to the axis of the cell. Thick layers are lightly lignified although thin layers show a higher content of lignin, close to that of opposite wood secondary wall. The more the wood was under tensile stress, the less the secondary wall was lignified, and lower the syringyl on guaiacyl lignin units' ratio was. The innermost layer of the secondary wall looks like a typical S3 layer with large microfibril angle and lignin occurrence. The interest of this kind of structure for the understanding of stress generation is discussed

    Changes in viscoelastic vibrational properties between compression and normal wood : roles of microfibril angle and of lignin

    Get PDF
    International audienceThis study aims at better understanding the respective influences of specific gravity (γ), microfibril angle (MFA), and cell-wall matrix polymers on viscoelastic vibrational properties of wood in axial direction. The wide variations of properties between normal wood (NW) and compression wood (CW) are in focus. Three young bent trees (Picea abies, Pinus sylvestris and Pinus pinaster) that recovered verticality were sampled. Several observed differences between NW and CW were highly significant in terms of anatomical, physical (γ, shrinkage, CIELab colorimetry), mechanical (compressive strength), and vibrational properties. Specific dynamic modulus of elasticity (E'/γ) decreases with increasing MFA, and Young's modulus (E') can be satisfactorily explained by γ and MFA. Apparently, the type of the cell wall polymer matrix is not influential in this regard. The damping coefficient (tanδ) does not depend solely on MFA of NW and CW. The tanδ - E'/γ relationship evidences that, at equivalent E'/γ, the tanδ of CW is approx. 34% lower than that of NW. This observation is ascribed to the more condensed nature of CW lignins, and this is discussed in the context of previous findings in other hygrothermal and time/frequency domains. It is proposed that the lignin structure and the amount and type of extractives, which are both different in various species, are partly responsible for taxonomy-related damping characteristics

    Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria

    Get PDF
    International audienceThe anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood secimens were taken from the upper and lower sides of naturally titled trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend.At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea)

    Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest

    Get PDF
    International audienceStudies on the periodicity of wood formation provide essential data on tree age and factors related to the control of tree growth. The aim of this work was to investigate the cambial phenology and its relation with leaf phenology and climatic seasonality in two tropical rainforest species belonging to the genus Parkia known for having a contrasted leaf phenology. From wood samples collected at 15 day intervals from April 2009 to February 2012 in five trees of both species, we quantified cambial activity by counting layers of cells in cambial zone, enlarging cells zone and wall thickening cells zone from wood prepared anatomical micro sections. In the same time, we observed leaf shedding behaviors in the crown of the studied trees. In both species, cambial activity was significantly reduced during leafless period. However, the cambial activity of P. velutina was not affected by seasonality while in P. nitida, we found a significant positive effect of the dry season on cambial activity. This diminution of activity associated to leaf shedding occurred annually during the dry season in P. nitida whereas the trees were not synchronous in time for P. velutina. On the contrary that is often admitted, the rest cambial period can be independent of environmental restriction such as dry season. Leaf phenology remains the best proxy to estimate cambial activity

    Multilayered Structure of Tension Wood Cell Walls in Salicaceae \u3ci\u3esensu lato\u3c/i\u3e and Its Taxonomic Significance

    Get PDF
    Salicaceae have been enlarged to include a majority of the species formerly placed in the polyphyletic tropical Flacourtiaceae. Several studies have reported a peculiar and infrequently formed multilayered structure of tension wood in four of the tropical genera. Tension wood is a tissue produced by trees to restore their vertical orientation and most studies have focused on trees developing tension wood by means of cellulose-rich, gelatinous fibres, as in Populus and Salix (Salicaceae s.s.). This study aims to determine if the multilayered structure of tension wood is an anatomical characteristic common in other Salicaceae and, if so, how its distribution correlates to phylogenetic relationships. Therefore, we studied the tension wood of 14 genera of Salicaceae and two genera of Achariaceae, one genus of Goupiaceae and one genus of Lacistemataceae, families closely related to Salicaceae or formerly placed in Flacourtiaceae. Opposite wood and tension wood were compared with light microscopy and three-dimensional laser scanning confocal microscopy. The results indicate that a multilayered structure of tension wood is common in the family except in Salix, Populus and one of their closest relatives, Idesia polycarpa. We suggest that tension wood may be a useful anatomical character in understanding phylogenetic relationships in Salicaceae. Further investigation is still needed on the tension wood of several other putatively close relatives of Salix and Populus, in particular Bennettiodendron, Macrohasseltia and Itoa

    A numerical approach to large deviations in continuous-time

    Full text link
    We present an algorithm to evaluate the large deviation functions associated to history-dependent observables. Instead of relying on a time discretisation procedure to approximate the dynamics, we provide a direct continuous-time algorithm, valuable for systems with multiple time scales, thus extending the work of Giardin\`a, Kurchan and Peliti (PRL 96, 120603 (2006)). The procedure is supplemented with a thermodynamic-integration scheme, which improves its efficiency. We also show how the method can be used to probe large deviation functions in systems with a dynamical phase transition -- revealed in our context through the appearance of a non-analyticity in the large deviation functions.Comment: Submitted to J. Stat. Mec

    Inequivalence of ensembles in a system with long range interactions

    Full text link
    We study the global phase diagram of the infinite range Blume-Emery-Griffiths model both in the canonical and in the microcanonical ensembles. The canonical phase diagram is known to exhibit first order and continuous transition lines separated by a tricritical point. We find that below the tricritical point, when the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps at transition energies. These results can be extended to weakly decaying nonintegrable interactions.Comment: Revtex, 4 pages with 3 figures, submitted to Phys. Rev. Lett., e-mail [email protected]

    RNA interference and nonviral targeted gene therapy of experimental brain cancer

    Get PDF
    According to isotopic labeling experiments, most of the carbon used by truffle (Tuber sp.) fruiting bodies to develop underground is provided by host trees, suggesting that trees and truffles are physically connected. However, such physical link between trees and truffle fruiting bodies has never been observed.We discovered fruiting bodies of Tuber aestivum adhering to the walls of a belowground quarry and we took advantage of this unique situation to analyze the physical structure that supported these fruiting bodies in the open air. Observation of transversal sections of the attachment structure indicated that it was organized in ducts made of gleba-like tissue and connected to a network of hyphae traveling across soil particles.Only one mating type was detected by PCR in the gleba and in the attachment structure, suggesting that these two organs are from maternal origin, leaving open the question of the location of the opposite paternal mating type

    Simulating rare events in dynamical processes

    Full text link
    Atypical, rare trajectories of dynamical systems are important: they are often the paths for chemical reactions, the haven of (relative) stability of planetary systems, the rogue waves that are detected in oil platforms, the structures that are responsible for intermittency in a turbulent liquid, the active regions that allow a supercooled liquid to flow... Simulating them in an efficient, accelerated way, is in fact quite simple. In this paper we review a computational technique to study such rare events in both stochastic and Hamiltonian systems. The method is based on the evolution of a family of copies of the system which are replicated or killed in such a way as to favor the realization of the atypical trajectories. We illustrate this with various examples
    corecore