40 research outputs found

    Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis may present a risk factor in achievement of osseointegration because of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical and electrical-energy in osteoporotic rats.</p> <p>Methods</p> <p>Fifteen 12-week old sprague-dowley rats were ovariectomized to develop osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the proximal metaphyses of tibia. The animals were randomly divided into a control group and biophysically-stimulated two test groups with five animals in each group. In the first test group, a pulsed electromagnetic field (PEMF) stimulation was administrated at a 0.2 mT 4 h/day, whereas the second group received low-magnitude high-frequency mechanical vibration (MECHVIB) at 50 Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed. Bone sites including implants were sectioned, removed <it>en bloc </it>and analyzed using a microCT unit. Relative bone volume and bone micro-structural parameters were evaluated for 144 μm wide peri-implant volume of interest (VOI).</p> <p>Results</p> <p>Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB was significantly higher than of those in control (<it>P </it>< .05). Differences in trabecular-thickness and -separation around implants in all groups were similar (<it>P </it>> .05) while the difference in trabecular-number among test and control groups was significant in all VOIs (<it>P </it>< .05).</p> <p>Conclusion</p> <p>Biophysical stimulation remarkably enhances bone volume around titanium implants placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF on bone healing in terms of relative bone volume.</p

    Cloning of a gene (SR-A1), encoding for a new member of the human Ser/Arg-rich family of pre-mRNA splicing factors: overexpression in aggressive ovarian cancer

    Get PDF
    By using the positional cloning gene approach, we were able to identify a novel gene encoding for a serine/arginine-rich protein, which appears to be the human homologue of the rat A1 gene. We named this new gene SR-A1. Members of the SR family of proteins have been shown to interact with the C-terminal domain (CTD) of the large subunit of RNA polymerase II and participate in pre-mRNA splicing. We have localized the SR-A1 gene between the known genes IRF3 and RRAS on chromosome 19q13.3. The novel gene spans 16.7 kb of genomic sequence and it is formed of 11 exons and 10 intervening introns. The SR-A1 protein is composed of 1312 amino acids, with a molecular mass of 139.3 kDa and a theoretical isoelectric point of 9.31. The SR-A1 protein contains an SR-rich domain as well as a CTD-binding domain present only in a subset of SR-proteins. Through interactions with the pre-mRNA and the CTD domain of the Polymerase II, SR proteins have been shown to regulate alternative splicing. The SR-A1 gene is expressed in all tissues tested, with highest levels found in fetal brain and fetal liver. Our data suggest that this gene is overexpressed in a subset of ovarian cancers which are clinically more aggressive. Studies with the steroid hormone receptor-positive breast and prostate carcinoma cell lines ZR-75-1, BT-474 and LNCaP, respectively, suggest that SR-A1 is constitutively expressed. Furthermore, the mRNA of the SR-A1 gene in these cell lines appears to increase by estrogens, androgens and glucocorticoids, and to a lesser extend by progestins. © 2001 Cancer Research Campaign http://www.bjcancer.co
    corecore