22 research outputs found

    Electro-optic entanglement source for microwave to telecom quantum state transfer

    Get PDF
    We propose an efficient microwave-photonic modulator as a resource for stationary entangled microwave-optical fields and develop the theory for deterministic entanglement generation and quantum state transfer in multi-resonant electro-optic systems. The device is based on a single crystal whispering gallery mode resonator integrated into a 3D-microwave cavity. The specific design relies on a new combination of thin-film technology and conventional machining that is optimized for the lowest dissipation rates in the microwave, optical, and mechanical domains. We extract important device properties from finite-element simulations and predict continuous variable entanglement generation rates on the order of a Mebit/s for optical pump powers of only a few tens of microwatts. We compare the quantum state transfer fidelities of coherent, squeezed, and non-Gaussian cat states for both teleportation and direct conversion protocols under realistic conditions. Combining the unique capabilities of circuit quantum electrodynamics with the resilience of fiber optic communication could facilitate long-distance solid-state qubit networks, new methods for quantum signal synthesis, quantum key distribution, and quantum enhanced detection, as well as more power-efficient classical sensing and modulation

    Quantum-enabled operation of a microwave-optical interface

    Get PDF
    Solid-state microwave systems offer strong interactions for fast quantum logic and sensing but photons at telecom wavelength are the ideal choice for high-density low-loss quantum interconnects. A general-purpose interface that can make use of single photon effects requires < 1 input noise quanta, which has remained elusive due to either low efficiency or pump induced heating. Here we demonstrate coherent electro-optic modulation on nanosecond-timescales with only 0.16+0.02−0.01 microwave input noise photons with a total bidirectional transduction efficiency of 8.7% (or up to 15% with 0.41+0.02−0.02), as required for near-term heralded quantum network protocols. The use of short and high-power optical pump pulses also enables near-unity cooperativity of the electro-optic interaction leading to an internal pure conversion efficiency of up to 99.5%. Together with the low mode occupancy this provides evidence for electro-optic laser cooling and vacuum amplification as predicted a decade ago

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Frequency-multiplexed hybrid optical entangled source based on the Pockels effect

    No full text
    In the recent years important experimental advances in resonant electro-optic modulators as high-efficiency sources for coherent frequency combs and as devices for quantum information transfer have been realized, where strong optical and microwave mode coupling were achieved. These features suggest electro-optic-based devices as candidates for entangled optical frequency comb sources. In the present work, I study the generation of entangled optical frequency combs in millimeter-sized resonant electro-optic modulators. These devices profit from the experimentally proven advantages such as nearly constant optical free spectral ranges over several gigahertz, and high optical and microwave quality factors. The generation of frequency multiplexed quantum channels with spectral bandwidth in the MHz range for conservative parameter values paves the way towards novel uses in long-distance hybrid quantum networks, quantum key distribution, enhanced optical metrology, and quantum computing

    Electro-optic frequency comb generation in lithium niobate whispering gallery mode resonators

    No full text
    Optical frequency combs (OFCs) are light sources whose spectra consists of equally spaced frequency lines in the optical domain [1]. They have great potential for improving high-capacity data transfer, all-optical atomic clocks, spectroscopy, and high-precision measurements [2]

    Realizing a quantum-enabled interconnect between microwave and telecom light

    No full text
    We present a quantum-enabled microwave-telecom interface with bidirectional conversion efficiencies up to 15% and added input noise quanta as low as 0.16. Moreover, we observe evidence for electro-optic laser cooling and vacuum amplification

    Bidirectional electro-optic wavelength conversion in the quantum ground state

    Get PDF
    This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request

    Optics InfoBase Conference Papers

    No full text
    We present results on nonlinear electro-optical conversion of microwave radiation into the optical telecommunication band with more than 0.1% photon number conversion efficiency with MHz bandwidth, in a crystalline whispering gallery mode resonato

    C. Literaturwissenschaft.

    No full text
    corecore