7,247 research outputs found
Electromagnetic Zero Point Field as Active Energy Source in the Intergalactic Medium
For over twenty years the possibility that the electromagnetic zero point
field (ZPF) may actively accelerate electromagnetically interacting particles
in regions of extremely low particle density (as those extant in intergalactic
space (IGS) with n < 1 particle/m^3 has been studied and analyzed. This
energizing phenomenon has been one of the few contenders for acceleration of
cosmic rays (CR), particularly at ultrahigh energies. The recent finding by the
AGASA collaboration (Phys. Rev. Lett., 81, 1163, 1998) that the CR energy
spectrum does not display any signs of the Greisen-Zatsepin-Kuzmin cut-off
(that should be present if these CR particles were indeed generated in
localized ultrahigh energies CR sources, as e.g., quasars and other highly
active galactic nuclei), may indicate the need for an acceleration mechanism
that is distributed throughout IGS as is the case with the ZPF. Other
unexplained phenomena that receive an explanation from this mechanism are the
generation of X-ray and gamma-ray backgrounds and the existence of Cosmic
Voids. However recently, a statistical mechanics kind of challenge to the
classical (not the quantum) version of the zero-point acceleration mechanism
has been posed (de la Pena and Cetto, The Quantum Dice, 1996). Here we briefly
examine the consequences of this challenge and a prospective resolution.Comment: 7 pages, no figure
Dark-matter dynamical friction versus gravitational-wave emission in the evolution of compact-star binaries
The measured orbital period decay of compact-star binaries, with
characteristic orbital periods ~days, is explained with very high
precision by the gravitational wave (GW) emission of an inspiraling binary in
vacuum. However, the binary gravitational binding energy is also affected by an
usually neglected phenomenon, namely the dark matter dynamical friction (DMDF)
produced by the interaction of the binary components with their respective DM
gravitational wakes. The entity of this effect depends on the orbital period
and on the local value of the DM density, hence on the position of the binary
in the Galaxy. We evaluate the DMDF produced by three different DM profiles:
the Navarro-Frenk-White (NFW), the non-singular-isothermal-sphere (NSIS) and
the Ruffini-Arg\"uelles-Rueda (RAR) profile based on self-gravitating keV
fermions. We first show that indeed, due to their Galactic position, the GW
emission dominates over the DMDF in the NS-NS, NS-WD and WD-WD binaries for
which measurements of the orbital decay exist. Then, we evaluate the conditions
under which the effect of DMDF on the binary evolution becomes comparable to,
or overcomes, the one of the GW emission. We find that, for instance for
-- NS-WD, --~ NS-NS, and
--~ WD-WD, located at 0.1~kpc, this occurs at orbital
periods around 20--30 days in a NFW profile while, in a RAR profile, it occurs
at about 100 days. For closer distances to the Galactic center, the DMDF effect
increases and the above critical orbital periods become interestingly shorter.
Finally, we also analyze the system parameters for which DMDF leads to an
orbital widening instead of orbital decay. All the above imply that a
direct/indirect observational verification of this effect in compact-star
binaries might put strong constraints on the nature of DM and its Galactic
distribution.Comment: 15 pages, 12 figures, 2 tables, accepted for publication in Phys.
Rev. D, 201
Strong-field gravitational-wave emission in Schwarzschild and Kerr geometries: some general considerations
We show how the concurrent implementation of the exact solutions of the
Einstein equations, of the equations of motion of the test particles, and of
the relativistic estimate of the emission of gravitational waves from test
particles, can establish a priori constraints on the possible phenomena
occurring in Nature. Two examples of test particles starting at infinite
distance or from finite distance in a circular orbit around a Kerr black hole
are considered: the first leads to a well defined gravitational wave burst the
second to a smooth merging into the black hole. This analysis is necessary for
the study of the waveforms in merging binary systems.Comment: Resubmitted to PRD after Referee repor
On the core-halo distribution of dark matter in galaxies
We investigate the distribution of dark matter in galaxies by solving the
equations of equilibrium of a self-gravitating system of massive fermions
(`inos') at selected temperatures and degeneracy parameters within general
relativity. Our most general solutions show, as a function of the radius, a
segregation of three physical regimes: 1) an inner core of almost constant
density governed by degenerate quantum statistics; 2) an intermediate region
with a sharply decreasing density distribution followed by an extended plateau,
implying quantum corrections; 3) an asymptotic, classical
Boltzmann regime fulfilling, as an eigenvalue problem, a fixed value of the
flat rotation curves. This eigenvalue problem determines, for each value of the
central degeneracy parameter, the mass of the ino as well as the radius and
mass of the inner quantum core. Consequences of this alternative approach to
the central and halo regions of galaxies, ranging from dwarf to big spirals,
for SgrA*, as well as for the existing estimates of the ino mass, are outlined.Comment: 8 pages, 5 figures. Accepted for publication by MNRA
Rational Hausdorff Divisors: a New approach to the Approximate Parametrization of Curves
In this paper we introduce the notion of rational Hausdorff divisor, we
analyze the dimension and irreducibility of its associated linear system of
curves, and we prove that all irreducible real curves belonging to the linear
system are rational and are at finite Hausdorff distance among them. As a
consequence, we provide a projective linear subspace where all (irreducible)
elements are solutions to the approximate parametrization problem for a given
algebraic plane curve. Furthermore, we identify the linear system with a plane
curve that is shown to be rational and we develop algorithms to parametrize it
analyzing its fields of parametrization. Therefore, we present a generic answer
to the approximate parametrization problem. In addition, we introduce the
notion of Hausdorff curve, and we prove that every irreducible Hausdorff curve
can always be parametrized with a generic rational parametrization having
coefficients depending on as many parameters as the degree of the input curve
Update on an Electromagnetic Basis for Inertia, Gravitation, the Principle of Equivalence, Spin and Particle Mass Ratios
A possible connection between the electromagnetic quantum vacuum and inertia
was first published by Haisch, Rueda and Puthoff (1994). If correct, this would
imply that mass may be an electromagnetic phenomenon and thus in principle
subject to modification, with possible technological implications for
propulsion. A multiyear NASA-funded study at the Lockheed Martin Advanced
Technology Center further developed this concept, resulting in an independent
theoretical validation of the fundamental approach (Rueda and Haisch, 1998ab).
Distortion of the quantum vacuum in accelerated reference frames results in a
force that appears to account for inertia. We have now shown that the same
effect occurs in a region of curved spacetime, thus elucidating the origin of
the principle of equivalence (Rueda, Haisch and Tung, 2001). A further
connection with general relativity has been drawn by Nickisch and Mollere
(2002): zero-point fluctuations give rise to spacetime micro-curvature effects
yielding a complementary perspective on the origin of inertia. Numerical
simulations of this effect demonstrate the manner in which a massless
fundamental particle, e.g. an electron, acquires inertial properties; this also
shows the apparent origin of particle spin along lines originally proposed by
Schroedinger. Finally, we suggest that the heavier leptons (muon and tau) may
be explainable as spatial-harmonic resonances of the (fundamental) electron.
They would carry the same overall charge, but with the charge now having
spatially lobed structure, each lobe of which would respond to higher frequency
components of the electromagnetic quantum vacuum, thereby increasing the
inertia and thus manifesting a heavier mass.Comment: 10 pages, 4 figures, AIP Conf. Proc., Space Technology and
Applications International Forum (STAIF-2003
- …