6 research outputs found

    microRNA -19b is a sex-dependent regulator of posttraumatic stress symptoms and widespread pain

    Get PDF
    Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent forms of trauma that occur at different rates in women and men. Genetic approaches to study pathways using model organisms and mutants have identified hundreds of genes correlated with PTWP/PTSS. Our lab sought to identify microRNAs (miRNAs) that contribute to sex-dependent differences in vulnerability to these outcomes. In the current study, we first identified miRNA that are predicted to regulate PTWP/PTSS genes using Monte Carlo simulations. We found that the most significant miRNA predicted to target PTWP/PTSS genes was miR-19b, a microRNA that has been shown previously to be regulated in response to estrogen and stress exposure. Next, we assessed whether miR-19b expression predicts PTWP/PTSS in a cohort of individuals experiencing motor vehicle collision, one of the most common forms of trauma currently experienced by Americans. Logistic regression demonstrated a sex dependent relationship between initial miR-19b levels following motor vehicle collision and later development of PTWP/ PTSS. The sex-dependent expression of miR-19b was also observed in a rat model of single prolonged stress, which is thought to be analogous to PTSS. We found miR-19b to be regulated by 17-β-estradiol in rat dorsal root ganglion neurons and amygdala, which are neural tissues commonly implicated in PTSS. The potential importance of miR-19b to PTWP/PTSS pathogenesis is highlighted by results showing that miR-19b can directly bind a number of pain and PTSS associated transcripts including circadian rhythm pathway genes. Together, our results suggest that miR-19b plays a regulatory role in PTWP and PTSS development following trauma/stress exposure. Thus, the level of miR-19b expression following motor vehicle collision may predict PTWP/PTSS and enable preventative treatment.Bachelor of Scienc

    A Functional riboSNitch in the 3\u27 Untranslated Region of

    No full text
    Previous studies have shown that common variants of the gene coding for FK506-binding protein 51 (FKBP5), a critical regulator of glucocorticoid sensitivity, affect vulnerability to stress-related disorders. In a previous report, FKBP5 rs1360780 was identified as a functional variant because of its effect on gene methylation. Here we report evidence for a novel functional FKBP5 allele, rs3800373. This study assessed the association between rs3800373 and post-traumatic chronic pain in 1607 women and men from two ethnically diverse human cohorts. The molecular mechanism through which rs3800373 affects adverse outcomes was established via in silico, in vivo, and in vitro analyses. The rs3800373 minor allele predicted worse adverse outcomes after trauma exposure, such that individuals with the minor (risk) allele developed more severe post-traumatic chronic musculoskeletal pain. Among these individuals, peritraumatic circulating FKBP5 expression levels increased as cortisol and glucocorticoid receptor (NR3C1) mRNA levels increased, consistent with increased glucocorticoid resistance. Bioinformatic, in vitro, and mutational analyses indicate that the rs3800373 minor allele reduces the binding of a stress- and pain-associated microRNA, miR-320a, to FKBP5 via altering the FKBP5 mRNA 3′UTR secondary structure (i.e., is a riboSNitch). This results in relatively greater FKBP5 translation, unchecked by miR-320a. Overall, these results identify an important gene–miRNA interaction influencing chronic pain risk in vulnerable individuals and suggest that exogenous methods to achieve targeted reduction in poststress FKBP5 mRNA expression may constitute useful therapeutic strategies

    Evaluation of the Association Between Genetic Variants in Circadian Rhythm Genes and Posttraumatic Stress Symptoms Identifies a Potential Functional Allele in the Transcription Factor

    No full text
    Previous studies suggest that genetic variants within genes affecting the circadian rhythm influence the development of posttraumatic stress symptoms (PTSS). In the present study, we used data from three emergency care-based cohorts to search genetic variants in circadian pathway genes previously associated with neuropsychiatric disorders for variants that influence PTSS severity. The three cohorts used included a discovery cohort of African American men and women enrolled following motor vehicle collision (n = 907) and two replication cohorts: one of multi-ethnic women enrolled following sexual assault (n = 274) and one of multi-ethnic men and women enrolled following major thermal burn injury (n = 68). DNA and RNA were collected from trauma survivors at the time of initial assessment. Validated questionnaires were used to assess peritraumatic distress severity and to assess PTSS severity 6 weeks, 6 months, and 1 year following trauma exposure. Thirty-one genetic variants from circadian rhythm genes were selected for analyses, and main effect and potential gene*stress and gene*sex interactions were evaluated. Secondary analyses assessed whether associated genetic variants affected mRNA expression levels. We found that six genetic variants across five circadian rhythm-associated genes predicted PTSS outcomes following motor vehicle collision (p \u3c 0.05), but only two of these variants survived adjustment for multiple comparisons (False Discovery Rate \u3c 5%). The strongest of these associations, an interaction between the PAR-zip transcription factor, thyrotroph embryonic factor (TEF) variant rs5758324 and peritraumatic distress, predicted PTSS development in all three cohorts. Further analysis of genetic variants in the genetic region surrounding TEFrs5758324 (±125,000 nucleotides) indicated that this allele showed the strongest association. Further, TEF RNA expression levels (determined via RNA-seq) were positively associated with PTSS severity in distressed individuals with at least one copy of the TEFrs5758324 minor allele. These results suggest that rs5758324 genetic variant in TEF, a regulator of clock-controlled genes and key mediator of the core circadian rhythm, influence PTSS severity in a stress-dependent manner

    MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure.

    No full text
    Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent comorbid sequelae of trauma that occur at different rates in women and men. We sought to identify microRNA (miRNA) that may contribute to sex-dependent differences in vulnerability to these outcomes. Monte Carlo simulations (x10,000) identified miRNA in which predicted targeting of PTWP or PTSS genes was most enriched. Expression of the leading candidate miRNA to target PTWP/PTSS-related genes, miR-19b, has been shown to be influenced by estrogen and stress exposure. We evaluated whether peritraumatic miR-19b blood expression levels predicted PTWP and PTSS development in women and men experiencing trauma of motor vehicle collision (n = 179) and in women experiencing sexual assault trauma (n = 74). A sex-dependent relationship was observed between miR-19b expression levels and both PTWP (β = -2.41, P = 0.034) and PTSS (β = -3.01, P = 0.008) development 6 months after motor vehicle collision. The relationship between miR-19b and PTSS (but not PTWP) was validated in sexual assault survivors (β = -0.91, P = 0.013). Sex-dependent expression of miR-19b was also observed in blood and nervous tissue from 2 relevant animal models. Furthermore, in support of increasing evidence indicating a role for the circadian rhythm (CR) in PTWP and PTSS pathogenesis, miR-19b targets were enriched in CR gene transcripts. Human cohort and in vitro analyses assessing miR-19b regulation of key CR transcripts, CLOCK and RORA, supported the potential importance of miR-19b to regulating the CR pathway. Together, these results highlight the potential role that sex-dependent expression of miR-19b might play in PTWP and PTSS development after trauma/stress exposure

    Evaluation of the Association Between Genetic Variants in Circadian Rhythm Genes and Posttraumatic Stress Symptoms Identifies a Potential Functional Allele in the Transcription Factor TEF

    Get PDF
    Previous studies suggest that genetic variants within genes affecting the circadian rhythm influence the development of posttraumatic stress symptoms (PTSS). In the present study, we used data from three emergency care-based cohorts to search genetic variants in circadian pathway genes previously associated with neuropsychiatric disorders for variants that influence PTSS severity. The three cohorts used included a discovery cohort of African American men and women enrolled following motor vehicle collision (n = 907) and two replication cohorts: one of multi-ethnic women enrolled following sexual assault (n = 274) and one of multi-ethnic men and women enrolled following major thermal burn injury (n = 68). DNA and RNA were collected from trauma survivors at the time of initial assessment. Validated questionnaires were used to assess peritraumatic distress severity and to assess PTSS severity 6 weeks, 6 months, and 1 year following trauma exposure. Thirty-one genetic variants from circadian rhythm genes were selected for analyses, and main effect and potential gene*stress and gene*sex interactions were evaluated. Secondary analyses assessed whether associated genetic variants affected mRNA expression levels. We found that six genetic variants across five circadian rhythm-associated genes predicted PTSS outcomes following motor vehicle collision (p < 0.05), but only two of these variants survived adjustment for multiple comparisons (False Discovery Rate < 5%). The strongest of these associations, an interaction between the PAR-zip transcription factor, thyrotroph embryonic factor (TEF) variant rs5758324 and peritraumatic distress, predicted PTSS development in all three cohorts. Further analysis of genetic variants in the genetic region surrounding TEFrs5758324 (±125,000 nucleotides) indicated that this allele showed the strongest association. Further, TEF RNA expression levels (determined via RNA-seq) were positively associated with PTSS severity in distressed individuals with at least one copy of the TEFrs5758324 minor allele. These results suggest that rs5758324 genetic variant in TEF, a regulator of clock-controlled genes and key mediator of the core circadian rhythm, influence PTSS severity in a stress-dependent manner.</p
    corecore