
 
 

 

microRNA -19b is a sex-dependent regulator of posttraumatic stress symptoms and widespread pain 

 

Abstract 

  

Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent forms 

of trauma that occur at different rates in women and men. Genetic approaches to study pathways using model 

organisms and mutants have identified hundreds of genes correlated with PTWP/PTSS. Our lab sought to 

identify microRNAs (miRNAs) that contribute to sex-dependent differences in vulnerability to these outcomes. In 

the current study, we first identified miRNA that are predicted to regulate PTWP/PTSS genes using Monte Carlo 

simulations. We found that the most significant miRNA predicted to target PTWP/PTSS genes was miR-19b, a 

microRNA that has been shown previously to be regulated in response to estrogen and stress exposure. Next, 

we assessed whether miR-19b expression predicts PTWP/PTSS in a cohort of individuals experiencing motor 

vehicle collision, one of the most common forms of trauma currently experienced by Americans. Logistic 

regression demonstrated a sex dependent relationship between initial miR-19b levels following motor vehicle 

collision and later development of PTWP/ PTSS. The sex-dependent expression of miR-19b was also observed 

in a rat model of single prolonged stress, which is thought to be analogous to PTSS. We found miR-19b to be 

regulated by 17-β-estradiol in rat dorsal root ganglion neurons and amygdala, which are neural tissues commonly 

implicated in PTSS. The potential importance of miR-19b to PTWP/PTSS pathogenesis is highlighted by results 

showing that miR-19b can directly bind a number of pain and PTSS associated transcripts including circadian 

rhythm pathway genes. Together, our results suggest that miR-19b plays a regulatory role in PTWP and PTSS 

development following trauma/stress exposure. Thus, the level of miR-19b expression following motor vehicle 

collision may predict PTWP/PTSS and enable preventative treatment. 
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Introduction 

 

Motor vehicle collision (MVC) is one of the most common traumatic stress exposures worldwide.1 For 

every 10 individuals experiencing MVC, evidence suggests that two will develop persistent posttraumatic 

widespread pain (PTWP) and three will develop posttraumatic stress symptoms (PTSS).2,3 These morbid 

sequelae of traumatic stress exposures such as MVC frequently co-occur,4-9 suggesting shared pathogenic 

mechanisms, and are more common in women,10-13 suggesting that such mechanisms may differ in women and 

men. However, biologic mechanisms responsible for PTWP and PTSS and contributing to sex differences in 

these adverse outcomes remain poorly understood, despite increasing evidence indicating that PTSS and pain 

processing are sex-dependent14-20. 

microRNA (miRNA) are small non-coding RNA molecules that regulate gene expression by binding to 

target mRNA. Because a single miRNA can regulate many different gene transcripts, each miRNA can act as a 

gene regulatory hub. Previous studies have shown that the study of miRNA can be a valuable tool for gaining 

insight into PTSS and PTWP pathogenesis (e.g.21-30). However, many of these previous studies used 

predominately male cohorts24,25,31,32 or focused on a single sex in animal model studies23,33-36. Therefore, whether 

miRNA expression levels predict PTSS and PTWP in a sex-dependent manner has not been addressed, despite 

evidence indicating that miRNA expression might be differentially regulated in men and women21,37-40. 

The current study used an unbiased in silico approach to first identify PTSS and pain miRNA regulatory 

hubs; that is, miRNA that are predicted to regulate more PTSS and pain- associated transcripts than expected 

by chance41. The top candidate miRNA regulatory hub, miR-19, was then assessed for differential expression in 

males and females who developed PTSS and/or PTWP vs those who recovered following MVC. Secondary 

analyses identified whether sex-dependent expression extended to nervous system tissues relevant to PTSS 

and PTWP and identified relevant pathways/transcripts regulated by miR-19. 

  



 
 

Materials/Subjects and Methods  

 

Bioinformatics  

Few studies evaluating genes associated specifically with post-traumatic widespread pain (PTWP) have 

been performed; genes associated with pain outcomes more generally were identified via the following pain gene 

databases: PainNetworks,42 Algynomics Pain Research Panel v2.0,43 and the PainGenes Database44 (n = 560 

unique genes, Supplementary Table 1). A structured literature review of peer-reviewed original research and 

review articles written in English was performed in May 2015 to identify genes previously associated with PTSS 

related phenotypes (n = 154 genes, Supplementary Table 2) using the following search terms: post-traumatic 

stress disorder, anxiety, attention deficit hyperactivity disorder, bipolar disorder, memory, panic disorder, 

depression, neuroticism, seasonal affective disorder, substance abuse, schizophrenia, obsessive compulsive 

disorder, OR social behavior AND gene, genetic, GWAS, OR transcript. miRNAs predicted to bind to the 3’UTR 

of these identified pain or PTSS genes (n = 629) were then identified using TargetScan 7.0.45  

Monte Carlo simulations (x10,000) consisting of randomly selected sets of genes, normalized to 3’UTR 

length, were used to generate a distribution of the number of predicted pain and PTSS gene targets for each 

known human mature miRNA (miR-Base v.21).41 This distribution was used to identify miRNA with the greatest 

preferential binding to genes previously associated with pain, PTSS, and pain and PTSS phenotypes. 

The ontology relationship between PTWP/PTSS genes predicted to be targeted by miR-19b was assessed 

using the DAVID v6.7 online algorithm (https://david.ncifcrf.gov/home.jsp).46 All miR-19b predicted target genes 

were input into DAVID and the ‘Gene Ontology Biological Process 1’ annotation was selected.  

Predicted miRNA/mRNA binding duplex/hybrids were determined using the RNA Hybrid online algorithm 

(http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/).47 

 

MVC Cohort Study 

This prospective longitudinal study enrolled African American individuals ≥ 18 and ≤ 65 years of age who 

presented within 24 hours of MVC to one of eleven emergency departments (EDs) in six states/districts 

(Michigan, Pennsylvania, Florida, Alabama, Massachusetts, and Washington D.C.) between July 2012 and July 



 
 

2015. The study only enrolled African Americans because of the pressing need for pain studies that focus on 

understudied, high risk groups.48-50 This study has been described in detail previously.51 In brief, individuals who 

did not have a fracture or other injury requiring hospital admission were screened for eligibility. Patients who 

were not alert and oriented were excluded, as were patients who did not self-identify as African American, were 

pregnant, prisoners, unable to read and understand English, or taking opioids above a total daily dose of 30 mg 

of oral morphine or equivalent. The study was approved by the institutional review boards of all participating 

hospitals. Each participant provided written informed consent before enrollment. 

 

Pain and PTSS assessments and outcome definitions in humans 

MVC-related pain intensity and distribution in the past week was assessed six months following MVC using 

the modified Regional Pain Scale.52 Pain intensity was evaluated in each of 19 body regions53 via a 0 (no pain) 

to 10 (maximum possible pain) numeric rating scale (NRS).54 PTWP was defined according to American College 

of Rheumatology 1990 criteria (i.e., axial pain, left and right sided pain, and upper and lower segment pain).55 

MVC-related PTSS were assessed six months following MVC using the Impact of Event Scale: Revised 

(IESR).56 This 22-item questionnaire includes avoidance, intrusion and hyperarousal subscales. Scores range 

from 0-88; a validated cut-off of 33 was used to define individuals with substantial PTSS.57 

Distress in the ED was measured using the Peritraumatic Distress Inventory, a 13-item questionnaire 

assessing the level of distress experienced immediately after a traumatic event.58 Each item on the questionnaire 

was evaluated using a 0 (no distress) to 4 (high distress) numeric rating scale. A validated cut-off of 23 was used 

to identify those with substantial distress59; this was also the mean and median level of distress in the cohort. 

 

Statistical analyses 

MVC cohort sociodemographic characteristics were summarized using standard descriptive statistics. 

Logistic regression analyses adjusted for participant age and ED study site were used to assess the relationship 

between miR-19b expression levels and PTSS or PTWP outcomes 6 months following MVC, and to derive odds 

ratios (ORs) and p-value significance. miR-19b is expressed across almost all cell types115 and at high levels in 

whole blood; therefore miR-19b sequencing reads were divided by 1000 and ORs can be interpreted as 



 
 

increased odds per 1000 sequencing reads of miR-19b. Sex- and stress-dependent effects were evaluated using 

interaction variables (miR-19b*stress and miR-19b*sex) because of evidence that such interactions are 

frequently present and important (e.g.60-65). Differences in ED miR-19b expression levels between women and 

men who did and did not subsequently develop PTSS or PTWP at 6 months were evaluated by comparing mean 

expression levels in the two groups. Bivariate correlations were used to determine Pearson correlation 

coefficients and p-values for the relationship between miR-19b and potential miR-19b regulated transcripts. 

Statistical analyses were carried out using SPSS software v24.0 or SAS software v9.4.  

 

Animals  

Experiments were performed on adult female and male Sprague Dawley rats (180–300 g; Charles River, 

Hollister, CA, Raleigh, NC, and Kingston, NY). Rats were housed under a 12-hour light/dark cycle in the 

Laboratory Animal Resource Center of the University of California, San Francisco, in the Division of Laboratory 

Animal Medicine at The University of North Carolina at Chapel Hill, or in the Veterinary Medical Unit at The 

University of Michigan. Animal care and use conformed to NIH guidelines. Experimental protocols were approved 

by the Institutional Animal Care and Use Committee at each university.  

 

Animal stress exposures 

Unpredictable Sound Stress: The details of the unpredictable sound stress (USS) protocol have been 

reported previously.66-69 Exposure to sound stress occurred over 4 days, on days 1, 3, and 4. Animals were 

placed in a soundproof chamber in sets of three individual cages that were positioned 25 cm from a speaker that 

emitted a 105-dB tone of mixed frequencies (11 to 19 kHz). Over a period of 30 min, rats were exposed to 5- or 

10-s sound epochs each minute at random intervals during the minute. Following each stress session, animals 

were returned to the animal facility. Two weeks following the final stressor, animals were tested for pain 

hypersensitivity using von Frey monofilaments on the left hind paw following injection of the algogen 

prostaglandin E2. Control animals were left undisturbed in the animal facility during stress tests, but were tested 

for hypersensitivity similarly to stressed animals.  



 
 

Single Prolonged Stress: The details of the single prolonged stress (SPS) protocol have been reported 

previously.70 Rats were exposed to serial stressors on one day as follows: restraint for 2 h, forced swim for 20 

min, and exposure to ether until general anesthesia was induced (generally under 5 minutes). Rats were single 

housed and left undisturbed in the animal facility for 7 days, a period crucial for the development of PTSS 

symptomatology.70 Following this period, fear conditioning, fear extinction, and extinction retention testing was 

conducted, as described previously.71 Control animals were also single housed and left undisturbed in the animal 

facility during the SPS procedure but experienced fear conditioning, fear extinction, and extinction retention 

testing similarly to stressed animals. 

 

DRG isolation and stimulation with 17β-estradiol 

Lumbar dorsal root ganglia (DRG) (L4-L6) were dissected from naïve, female Sprague Dawley rats (4-5 

weeks old) and digested with 2 mg/ml collagenase (Sigma, St. Louis, MO) and 5 mg/ml dispase II (Sigma, St. 

Louis, MO) in 1x HBSS at 37°C for 30 min. Cells were triturated with flame-polished Pasteur pipets, and plated 

at 2x105 cells/ml onto 96-well plates pre-coated with poly-D-lysine (Sigma, P7886) and Laminin (Sigma, St. 

Louis, MO). Twenty-four hours after plating, 1 µM cytosine β-D-arabinofuranoside was added.  DRG neurons 

were deprived of hormones by growing them in neurobasal A (Gibco, Waltham, MA) lacking phenol red, 

supplemented with 10% dextran-coated charcoal treated FCS, 50 µg/mL gentamicin, and murine nerve growth 

factor 2.5S (Gibco, Waltham, MA) for 72 hours. Stimulation with 100 nM 17β-estradiol (Sigma, St. Louis, MO) 

lasted for 3 or 6 hours. RNA was isolated after each time point using TRIzol (Invitrogen, Carlsbad, CA).  

RNA collection and isolation 

MVC cohort blood samples were collected in the ED at the time of enrollment using PAXgene RNA tubes. 

Total RNA (including miRNA) was isolated using the PAXgene blood miRNA kit (QIAGEN) and RNA was stored 

at -80 ˚C until use.  

For both stressed and non-stressed rats, blood and tissue RNA were collected immediately following pain or 

fear learning protocols. RNA was collected from animals in the single prolonged stress protocol via tail bleed 

immediately following CO2 euthanasia into RNAprotect Animal Blood Tubes (Qiagen, Germantown, MD). Total 

RNA was isolated using RNeasy Protect Animal Blood Kits (Qiagen) and stored at -80 ˚C until use. Plasma was 



 
 

collected from animals in the sound stress protocol by collecting trunk blood immediately following live 

decapitation. RNA was isolated from plasma using miRNeasy Serum/Plasma kits (Qiagen). Tissue RNA (aside 

from DRG for 17β-estradiol study, above) was collected by isolating the specific tissue and immediately storing 

in RNA later (ThermoFisher) according to manufacturer’s instructions. Animals used for tissue isolation were 

sacrificed via live decapitation without anesthesia, after which tissue samples (amygdala, hippocampus, 

hypothalamus, adrenal glands, DRG and peripheral nerve) were isolated within 30 min. Tissue was homogenized 

using Bashing Beads (Zymo Research, Irvine, CA) or a motorized homogenizer, RNA isolated using DirectZol 

(Zymo Research), and total RNA stored at -80˚C until use. 

For all RNA samples, RNA concentration and purity were measured using a NanoDrop One (Nanodrop 

Technologies, Wilmington, DE), and RNA integrity was measured using an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). Only RNA meeting an RNA integrity score of 7 or greater were used in this 

study. 

 

Next Generation Sequencing  

Small RNAs: Template libraries for miRNA Next Generation Sequencing were produced from 1.0 µg total 

RNA using two similar protocols. An initial set of 69 samples (randomly selected from the full MVC cohort) were 

prepped using an adaptation of published protocols as described previously.21,72 A second set of 89 samples 

(also randomly selected) were prepped using TruSeq Small RNA library prep kits according to manufacturer’s 

specifications (Illumina, San Diego, CA). Six samples were library prepped using both methods. Twelve barcoded 

libraries were combined per lane and sequenced on a HiSeq 2000 (Illumina). Raw sequence reads were 

processed using a custom bioinformatics pipeline as described previously21, and were normalized using upper 

quartile normalization. In order to normalize potential technical biases between the two methods of library 

preparation, sequencing reads were adjusted for batch effects using the ComBat package in R.73 

Total RNA (excluding miRNA): Template libraries for total RNA sequencing were produced from 600ng total 

RNA using Ovation Human Blood RNA-Seq Library Systems kit (NuGen, San Carlos, CA) according to 

manufacturer’s specifications. Libraries were multiplexed in groups of six and sequenced on a HiSeq 2000 at 

the University of North Carolina at Chapel Hill High Throughput Sequencing Facility. Raw sequencing reads were 



 
 

aligned to the human hg19 genome assembly using STAR (version 2.4.2a).74 Expression level of each transcript 

were estimated via RSEM75 using University of California Santa Cruz (UCSC) known gene transcript and gene 

definitions. Raw RSEM read counts for all samples were normalized to the overall upper quartile76 before 

comparison and visualization. 

 

Reverse transcription-quantitative PCR  

miR-19b expression levels were measured in 26 samples from the MVC cohort using reverse transcription – 

quantitative PCR (RT-qPCR) according to the methods of Chen et al77. These samples were not part of the 

cohort that was used for RNA sequencing, thus they expanded the final cohort size to 178 participants. The 

samples were chosen based on case (PTSS and PTWP) control status at 6 months and were matched on age 

(within 5 years) and sex. Stem-loop RT primers and TaqMan probes for miR-19b and RNU48 detection were 

obtained from Life Technologies (Carlsbad, CA). 

miR-19b expression levels from animal model samples were measured via RT-qPCR using the same 

miR-19b RT primers and TaqMan probes as from human studies but used U87 as the control RNA. 

 

microRNA microarray 

Total RNA isolated from rat DRG was end-labeled with biotin and hybridized onto Affymetrx miRNA 4.0 

cartridge arrays. Total RNA was prepared using the Affymetrix FlashTag™ Biotin HSR RNA Labeling Kit and 

manual. Biotin-labeled RNA was then added to a hybridization cocktail (biotin-labeled total RNA, 50 pM control 

oligonucleotide B2, BioB, BioC, BioD and cre hybridization controls, 9.7 % DMSO, 4% formamide, 1x 

hybridization mix). Affymetrix miRNA 4.0 arrays (Affymetrix, Santa Clara, CA) were hybridized for 16 h at 48 °C 

in the GeneChip Hybridization Oven 645 (Affymetrix). The arrays were washed and stained with R-phycoerythrin 

streptavidin in the GeneChip Fluidics Station 450 (Affymetrix). The arrays were scanned with the GeneChip 

Scanner 3000 7G Plus with autoloader. GeneChip Command Console Software (AGCC) was used for washing, 

staining and scanning control of the instrumentation.  Affymetrix Expression Console Software was used for 

basic data analysis and quality control. 

 



 
 

 

Luciferase assays 

Cloning. The 3’UTRs of human genes RORA, NPAS2, and CLOCK were amplified from human 293T cell 

line genomic DNA using primers as indicated in Supplementary Table 3. The amplified 3’UTRs consisted of 

either the entire 3’UTR or a portion thereof, which preserved the relative location of the miR-19b binding site in 

the context of the full length 3’UTR. The resulting PCR products were cloned downstream of the firefly luciferase 

gene in pL-SV40-GL3 using XhoI and NotI or EcoR1 restriction enzyme sites. These newly created constructs 

were then mutated at the predicted miR-19b binding sites such that 2-3 mismatches were incorporated into the 

seed binding region (primers in Supplementary Table 3). 

Transfections/luciferase assays. Nine fmol pL-SV40-GL3 + 3’UTR and 36 fmol pL-SV40-Rluc were 

transfected into 293T cells using Lipofectamine 3000 (Invitrogen, Carlsbad, CA). Additionally, 136 fmol of an 

empty plasmid containing GFP was transfected into cells to monitor transfection efficiency. Six hours later, the 

media was replaced and the cells were transfected a second time with either 10 µM miR-19b mimic (Ambion, 

MC10629, Waltham, MA) or 10 µM negative control (Ambion, 4464058) using Lipofectamine RNAiMAX 

(Invitrogen). Seventy-two h later, cells were lysed and assayed for Luciferin protein levels using the Dual 

Luciferase Reporter Assay System (Promega, Madison, WI). Firefly and Renilla luciferase levels were quantified 

using a Synergy HTX multi-mode Reader (BioTek, Winooski, VT). The measured firefly luciferase luminescence 

was normalized by dividing by the corresponding sample’s Renilla luciferase luminescence. The normalized 

luminescence values from each triplicate were averaged. Change was measured by dividing the average 

luminescence of samples containing miR-19b mimic by the level form the negative control.  

  



 
 

Results 

 

In silico analyses identify miR-19 as a regulatory hub for the expression of genes involved in the pathogenesis 

of PTSS and PTWP 

Among all known human mature miRNAs (n=2,588, miRBase v21.0), 244 (9.4%) were predicted to target 

one or more gene transcripts previously associated with PTSS and pain outcomes (Figure 1a, range 1- 198). 

Monte Carlo simulations (x10,000) were used to determine the degree of preferentially predicted binding of each 

miRNA to transcripts associated with PTSS, pain, and PTSS and pain, while accounting for targeting distribution 

(Figure 1b). Based on these in silico analyses, the miR-19 family of transcripts was identified as most 

preferentially targeting PTSS and pain transcripts (p < 0.05, Figure 1b). The miR-19 family includes miR-19a 

and miR-19b (Supplementary Figure 1); these two miRNA have identical seed sequences, and thus similar 

predicted targeting, but originate from different genomic loci (miR-19a: 13q31.3, miR-19b: 13q31.3 and Xq26.2). 

Subsequent analyses focused on miR-19b as a potential pain and PTSS-regulatory hub, because it has been 

shown to be associated with PTSS, pain, and stress previously.21,23,24,35,78,79  

 

miR-19b predicts the development of PTSS and PTWP in humans following MVC 

To assess for evidence that miRNA-19b regulates the expression of genes involved in the pathogenesis of 

PTSS and PTWP, we evaluated whether miRNA-19b blood levels in the immediate aftermath of motor vehicle 

collision (MVC) predict PTSS and PTWP outcomes. Participants (n = 178) were drawn from a prospective cohort 

study of individuals presenting to the ED after MVC. Blood samples were obtained in the ED, and PTSS and 

PTWP outcomes were assessed at six months (Figure 2a). Most study participants were women less than 40 

years of age who presented to the ED within an hour of MVC (Table 1). miRNA blood levels were assayed using 

either RNAseq (n = 152) or RT-qPCR (n = 26). 

In initial general linear modeling (n = 152), a sex*miR-19b interaction was observed for both PTSS (OR = 

1.41, p = 0.039, Table 2) and PTWP outcomes (OR = 1.46, p = 0.031, Table 2). (These associations persisted 

after adjusting for prior trauma exposure.) Subsequent analyses were therefore stratified by sex. In such stratified 

analyses, miR-19b expression levels were lower in women who developed PTWP and substantial PTSS than in 



 
 

those who recovered (1.40-1.45 fold lower, p = 0.044 for PTSS, p = 0.026 for PTWP, Supplementary Table 4, 

Figure 2b, c). In contrast, miR-19b expression levels were higher in men who developed PTWP and substantial 

PTSS than in those who recovered (1.42-1.45 fold higher, p = 0.039 for PTSS, p = 0.113 for PTWP, 

Supplementary Table 4, Figure 2b, c). These observations were replicated in the 26 individuals from the MVC 

study in whom miRNA blood levels were assayed using RT-qPCR (Figure 2d). In secondary analyses using 

small RNAseq data, we also found that circulating blood miR-19a levels predicted PTWP and substantial PTSS 

in a sex-dependent manner (Supplementary Table 5). 

 

miR-19b is expressed in a sex-dependent manner in animal models of pain and PTSS 

We next evaluated whether this sex-dependent expression of miR-19b observed in our human MVC cohort 

was also present in animals exposed to paradigms known to produce stress-induced hyperalgesia (unpredictable 

sound stress model (USS)67,68) and altered fear learning (single prolonged stress (SPS) model,70,80 a model of 

PTSS) (Figure 3a). Because our human studies focused on blood expression levels of miR-19b, we first 

examined circulating levels of miR-19b in animals. In these samples, we found results paralleling our human 

data: male animals exposed to these paradigms demonstrated higher levels of circulating miR-19b as compared 

to unstressed control animals, whereas females demonstrated lower levels of miR-19b (Figure 3b, 3c).  

We next evaluated for sex differences in miR-19b levels in animal tissue known to be relevant to PTSS and 

PTWP pathogenesis. miR-19b was moderate-to-highly expressed in all tissues examined (Supplementary 

Figure 2a). When comparing expression levels between males and females, females expressed lower levels of 

miR-19b in all peripheral tissues (blood, DRG, peripheral nerve, and adrenal gland) but was expressed at equal 

levels in both sexes in all brain regions examined (amygdala, hippocampus, hypothalamus) (Supplementary 

Figure 2b). In male animals exposed to USS, miR-19b expression levels were increased in the amygdala and 

hypothalamus relative to male animals not exposed to USS (Figure 3d, 3e). This result was consistent with 

previous reports demonstrating increased miR-19b expression levels in the amygdala of male animals following 

stress exposure.23,35 However, in female animals exposed to USS, miR-19b expression levels in the amygdala 

and hypothalamus were similar to miR-19b expression in female animals not exposed to USS (Figure 3d, 3e).  

 



 
 

Estrogen stimulation of DRG neurons results in a decrease in miR-19b expression  

The above data demonstrate that miR-19b predicts PTSS and PTWP in a sex-dependent manner in humans, 

and is expressed at lower levels in females than males in human blood and animal tissue (see also 

Supplementary Figure 2b). These data, together with previous data showing that miR-19b is under the 

transcriptional control of the main female sex hormone 17β- estradiol,40 led us to hypothesize that 17β-estradiol 

regulates miR-19b expression in the peripheral tissues examined in this study. We therefore tested whether 17β-

estradiol stimulation alters miR-19b expression in female primary cultures of dorsal root ganglion (DRG) neurons. 

miR-19b expression decreased 3 hours following stimulation with 100 mM 17β-estradiol (1.23 fold lower, p < 

0.05, Supplementary Figure 3) but returned to baseline expression levels 6 hours following stimulation. As a 

positive control, we also assessed expression of CGRP mRNA expression following stimulation with 17β-

estradiol. Consistent with previous reports which show that CGRP is upregulated in response to estrogen (e.g.81), 

CGRP expression increased 3 and 6 hours after stimulation with 100 mM 17β-estradiol (1.90 fold higher, p < 

0.05, Supplementary Figure 3).  

 

Rhythmic processes are predicted to be over-represented in targeting by miR-19b 

The primary mechanism through which miRNA influence disease onset/outcomes is by regulating the 

expression of transcripts in biological pathways influencing pathogenic processes. A single miRNA can act as a 

gene regulatory hub by regulating many such transcripts. To identify potential biologic pathways regulated by 

miR-19b, we evaluated gene ontology (GO) relationships within miR-19b predicted targets using the DAVID 

online algorithm. The GO group with the highest fold enrichment was “rhythmic processes” (GO:0048511) (9.867 

fold enrichment, p = 1.5x10-5, Supplementary Table 6); this group included well-known circadian rhythm 

pathway genes such as CLOCK, NPAS, and PER1. Interestingly, this algorithm did not categorize the miR-19b 

predicted target, RORA, as a gene involved in rhythmic processes even though it is known to play a central role 

in the circadian rhythm.82 RORA is of interest because it has previously been associated with PTSS 

vulnerability.83,84 Additionally, evidence also implicates circadian and sleep dependent processes in pain, PTSS, 

and related neuropsychiatric disease pathogenesis.85-90 Overall, the results of GO bioinformatics predictions 

suggest that miR-19b may influence PTSS and PTWP outcomes by regulating circadian rhythm pathway genes. 



 
 

 

Circadian rhythm gene transcripts are negatively correlated with miR-19b expression levels in individuals who 

develop PTSS and/or PTWP following MVC and are directly regulated by miR-19b in vitro 

If miR-19b regulates circadian rhythm pathway genes in vivo, then individuals with high levels of miR-19b 

would be expected to have low levels of miR-19b targets (due to repression of the transcript by the miRNA). 

Consistent with this hypothesis, among individuals experiencing MVC a negative correlation was observed 

between miR-19b and key circadian rhythm transcripts RORA, CLOCK, and NPAS2 (except for men with 

NPAS2), and this relationship was stronger in individuals who developed PTSS/PTWP following MVC vs those 

who recovered (Figure 4a, 4b, 4c). The inverse relationship between miR-19b and CLOCK and RORA 

transcripts was also stronger in males than females, which is consistent with higher expression of miR-19b in 

male participants who develop PTSS/PTWP than female participants who developed PTSS/PTWP (see Figure 

2b, 2c). Using in vitro dual luciferase reporter assays, we also found that, consistent with bioinformatics 

predictions, miR-19b could directly bind and repress each of the 3’UTRs of these genes (Figure 4d, 4e, 4f). 

Together these data suggest that the influence of miR-19b on PTSS/PTWP development is due, at least in part, 

to miR-19b’s regulation of key circadian rhythm pathway transcripts. 



 
 

Discussion 

 

We evaluated the potential role of miRNA in the development of PTSS and PTWP using in silicio, in vitro, 

animal, and human data. Unbiased in silicio analyses implicated members of the miR-19 family in PTSS and 

PTWP pathogenesis, by having the highest degree of preferential predicted binding to PTSS and PTWP-

associated transcripts. Circulating miR-19b levels in the immediate aftermath of MVC were found to predict both 

substantial PTSS and PTWP six months after trauma exposure. Interestingly, associations between miR-19b 

levels and PTSS and PTWP outcomes were sex-dependent, with lower levels of miR-19b predicting PTSS and 

PTWP in women and higher levels predicting PTSS and PTWP in men. These associations and sex differences 

in associations were found in animal models of PTSS and PTWP, both in blood and in tissues relevant to PTSS 

and PTWP pathogenesis, and may be mediated in part by 17β-estradiol. Bioinformatics analyses indicated that 

gene pathways associated with circadian processes implicated in the development of adverse posttraumatic 

neuropsychiatric sequelae such as PTSS and PTWP were most likely to be targeted by miR-19b. Consistent 

with these data, in in vitro analyses miR-19b was found to directly bind and repress the 3’UTRs of key circadian 

rhythm transcripts, and a negative correlation was observed between miR-19b and these transcripts in humans 

experiencing MVC trauma, particularly those developing PTSS or PTWP.  

The molecular mechanisms accounting for the above associations between miR-19b and the development 

of substantial PTSS and PTWP, and sex differences in the direction of these associations, remain unknown. If 

miR-19b not only marks vulnerability to these outcomes, but also influences their development, then it is likely 

that miR-19b does so by altering the levels of key gene transcripts, such as those involved in circadian rhythm 

homeostasis. For example, in males, the higher levels of miR-19b expression associated with vulnerability to 

PTSS/PTWP would be expected to result in increased repression of key circadian rhythm regulators such as 

CLOCK, RORA, and NPAS2, and less robust activation of the circadian rhythm pathway. In women, the lower 

levels of miR-19b associated with vulnerability would be expected to have the opposite effect, resulting in more 

robust activation of the circadian rhythm pathway. Evidence suggests that disruption in circadian rhythm 

processing in either direction can have large downstream effects on rhythmic gene expression across multiple 

tissues and bodily systems.91-93 Thus from a global perspective it is possible that in both males and females miR-



 
 

19b expression levels that push biological systems too far from the mean in either direction are pathogenic. 

Further studies are needed to understand the mechanisms accounting for the association between miR-19b and 

PTSS and PTWP, and sex differences in the direction of these associations. 

Volk et al. and Balakathiresan et al. previously identified higher levels of miR-19b expression (in the 

amygdala and serum, respectively) in male animals exposed to chronic stress,23,35 and Wang et al. and Sakai et 

al. found that miR-19a was associated with chronic neuropathic pain in male rats.36,94 In humans, Martin et al. 

identified miR-19a as the most differentially up-regulated miRNA in male combat veterans who developed 

PTSD.25 Our findings in male animals and humans are consistent with these data, but extend them and place 

them in sex-specific context, as miR-19a consistently predicts substantial PTSS and PTWP in females, but in a 

direction opposite to males. These data highlight the importance of evaluating potential sex-specific effects on 

stress-related disorder pathogenesis, as studies examining both sexes would likely not identify an association 

between miR-19a/b and these outcomes unless specifically stratifying for sex. Our results indicate that 17-β-

estradiol may contribute to the lower levels of miR-19b observed in females. Although not experimentally tested 

in the current study, it is likely that 17-β-estradiol regulation of miR-19b is indirect, based on the fact that we did 

not bioinformatically identify an estrogen response element in the promoter region of miR-19b. In addition to 

regulation by 17-β-estradiol, it is also possible that miR-19b is regulated in a sex-dependent manner via other 

sex hormones or via non-hormonal mechanisms. For instance, X chromosome-specific regulatory events, such 

as X chromosome inactivation, might also influence miR-19b levels, as this miRNA originates from two 

evolutionary paralogous genomic regions, one on chromosome 13 and the other on the X chromosome. 

Of note, while our analyses focused on miR-19b, our in silico analyses identified a number of other miRNA 

that may also influence posttraumatic pain and PTSS pathogenesis and/or maintenance. Many of these miRNA, 

including miR-30, miR-181, miR-15, and miR-124, have already been shown to be associated with stress-related 

disorders.33,95-98 It should be noted, however, that while our in silico selection criteria prioritized miRNA that bind 

many gene targets, other miRNA not selected as top candidates using this method may also have an important 

influence on PTSS or posttraumatic pain if they affect the expression of one or only a few genes, but these genes 

are highly influential. Examples of such miRNA include miR-13521,34,99,100, miR-103101,102, and miR-32022,65,103-106.  



 
 

miR-19b originates from both the miR-17-92 cluster (chromosome 13) and the miR-106a-363 cluster (X 

chromosome). In this study, we did not examine the role of other members of these two clusters on PTSS and 

PTWP outcomes following MVC. However, it is interesting to note that the miR-17/20/106 family of miRNA, that 

originates from the same genomic regions (and is regulated by the same promoter region), was identified as a 

candidate regulatory hub in in silico analyses. Therefore, these miRNAs might also predict PTSS/PTWP 

development following trauma exposure in a sex-dependent manner. As additional evidence suggests that this 

might be the case, using the online bioinformatics algorithm DIANA miRPath107, these three miRNA are also 

predicted to preferentially target the circadian rhythm pathway. 

The fact that miR-19b regulates multiple key transcripts involved in the circadian rhythm pathway is 

interesting given the wealth of (albeit conflicting) literature linking this pathway to PTSS vulnerability. For 

instance, RAR-related orphan receptor alpha (RORA), which we showed to be strongly regulated by miR-19b in 

this study, has been shown to be both genetically associated83,84,108 and not associated109 with PTSD. Additional 

studies have also shown physiological relationships between the circadian rhythm and PTSD pathogenesis,110 

and literature from the pain field also implicates sleep and circadian abnormalities to pain vulnerability86,87,111-114. 

However, very few studies have examined whether there are sex-dependent differences in the contribution of 

the circadian rhythm pathway to PTSS/PTWP pathogenesis. This study adds evidence to this growing body of 

literature implicating the circadian rhythm pathway and core circadian rhythm genes in the pathogenesis of pain 

and PTSS development. Future studies examining the influence of sleep and the circadian rhythm pathway on 

pain and PTSS outcomes should include sex as a variable.  

The many strengths of this study include being one of the largest human studies of miRNA predictors of 

PTSS and PTWP development in male and female trauma survivors to date, and that it used coordinated 

translational studies (in silico, human cohort, animal, and molecular/cell culture experiments) to guide and 

strengthen the validity of the findings. However, several limitations should be considered when interpreting this 

work. First, the main findings of the study have not been replicated in a second cohort of post-trauma survivors. 

This is an essential next step for future studies. However, this study did internally replicate the RNA sequencing 

findings (both technically and biologically) by examining miR-19b expression in an expanded cohort of 26 age-

matched cases and controls using RT-qPCR. Second, this study did not assess the influence of 17-β-estradiol 



 
 

levels on miR-19b association with PTSS/PTWP in female participants following MVC. This would have been an 

interesting experiment given the cell culture results demonstrating that 17-β-estradiol can negatively regulate 

miR-19b in neuronal tissue. Third, this study focused on the experimental validation of only a subset of the many 

predicted targets of miR-19b, those of the circadian rhythm pathway. This decision is supported by strong 

bioinformatics pathway analyses, however, it is possible that other transcripts predicted to be regulated by miR-

19b are also important to the pathogenesis of PTSS/PTWP. Finally, this work was performed in only African 

American individuals and in one strain of rats. Therefore, whether there are also ethnic/strain differences in the 

association between miR-19b and PTSS/PTWP is not known.  

In summary, we report the first set of evidence indicating that miR-19b is differentially regulated in males and 

females following trauma and that expression levels of miR-19b in the early aftermath of MVC predict PTSS and 

PTWP outcomes in men and women. Further, this data suggests that miR-19b may affect the development of 

these stress-related disorders by altering the levels of key circadian rhythm gene transcripts. Future studies are 

needed to delineate the sex-dependent effects of miR-19b on circadian rhythm signaling and on adverse 

posttraumatic outcomes.  
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Figure 1. In silico analyses indicate that miR-19 is a strong candidate regulatory hub for both 

pain and PTSS. (a) 244 miRNA (indicated by each blue dot) target at least one pain/PTSS 

gene.  miR-19 is predicted to target 112 of 629 pain/PTS genes. (b) Of the miRNA targeting the 

most pain/PTS genes, miR-19 is the strongest predicted regulatory hub for pain and PTSS, 

indicated by high combined values of the negative logarithm of the empirical p-value (p <0.002, 

green dotted line) for pain (gray circles) and PTSS (gray squares).  
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Table 1. Baseline characteristics of study participants  (n = 178) 

Characteristic  

Enrolled, n 178 

Age, years, mean (SD) 34 (12) 

Females, n (%) 112 (63) 

Education, n (%)  

HS or less 68 (39) 

Some college 77 (43) 

College 25 (14) 

Post-college 7 (4) 

Collision characteristics  

     Driver, n (%) 121 (68) 

     Severe vehicle damage, n (%) 106 (60) 

     Seatbelt worn, n (%) 143 (80) 

     Airbag deployed, n (%) 63 (35) 

Location of vehicle damage  

     Front, n (%) 81 (46) 

     Rear, n (%) 54 (30) 

     Right side, n (%) 38 (21) 

     Left side, n (%) 29 (16) 

Distress* in the early aftermath of trauma, mean (SD)  23 (11) 

Overall pain in the ED (0-10 NRS), mean (SD) 7.3 (2.2) 

Median time to ED, minutes 60 

Number of previous life events**, mean (SD) 3.5 (2.7) 

IESR score at 6 months, mean (SD) 31 (26) 

Overall pain at 6 months, mean (SD) 5.2 (3.3) 
*Distress measured with the peritraumatic distress inventory (scale of 0-52) 
**Life events checklist (assess 16 different types of trauma plus a question about 
‘other trauma’) 



 
 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Logistic regression models examining the relationship between 

Emergency Department levels of miR-19b expression and Posttraumatic 
Stress (PTSS) or Posttraumatic Widespread Pain (PTWP) six months after 
Motor Vehicle Collision (n = 152).   

 PTSS PTWP 

Variablea OR (95% CI)b p value OR (95% CI)b p value 

miR-19b 0.86 (0.59, 1.27) 0.462 0.74 (0.47, 1.12) 0.190 

     x stress 0.99 (0.98, 1.01) 0.735 1.00 (0.99, 1.02) 0.693 

     x sex 1.41 (1.02, 1.95) 0.039 1.46 (1.04, 2.06) 0.031 

Stress 1.06 (1.00, 1.13) 0.051 1.05 (0.99, 1.12) 0.131 

Sex 0.78 (0.19, 3.10) 0.726 0.33 (0.08, 1.39) 0.131 

Age 1.00 (0.97, 1.05) 0.660 1.03 (0.99, 1.07) 0.088 
aSite was also included in the model as a categorical variable. bOR = odds ratio, CI = 
confidence interval.  
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Figure 2. miR-19b is differentially expressed in male and female individuals who develop posttraumatic 

stress symptoms (PTSS) and/or posttraumatic widespread pain (PTWP) following motor vehicle collision 

(MVC). (a) Simplified study design schematic showing that women and men were enrolled in the ED 

following MVC, blood samples were obtained in the ED, and PTSS and PTWP outcomes were assessed 

at six months. (b) miR-19b expression levels (n=152) in male (blue) and female (red) participants who 

developed low versus high levels of PTSS following MVC as measured by miRNA sequencing. (c) miR-

19b expression levels (n=152) in male (blue) and female (red) participants who develop low versus high 

levels of PTWP following MVC as measured by miRNA sequencing. (d) RT-qPCR data showing relative 

miR-19b expression levels in individuals who recover following MVC versus those who develop both 

PTSS and PTWP six months following MVC. Data are represented as mean + SEM. *p < 0.05.  
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Figure 3. miR-19b is expressed differently in male and female rats following stress exposure. Sex-

dependent association of miR-19b with pain and PTS symptoms in humans and animals. (a) Schematic 

diagram of the animal protocol used to assess sex-dependent differences in miR-19b expression. Male 

and female Sprague Dawley rats were either unstressed or exposed to unpredictable sound stress (USS) 

or single prolonged stress (SPS). All animals were assessed for hyperalgesia or fear conditioning 14 or 

7 days following stress exposure, and blood and brain were isolated immediately following. (b) 

Circulating miR-19b expression levels in male (blue, n=12) and female (red, n=12) rats unstressed or 

exposed to USS. (c) Circulating miR-19b expression levels in male (blue, n=28) and female rats (red, 

n=19) unstressed or exposed to SPS. (d) miR-19b expression levels in the amygdala of male (blue, 

n=12) and female rats (red, n=12) unstressed or exposed to USS. (e) miR-19b expression levels in the 

hippocampus of male (blue, n=12) and female rats (red, n=12) unstressed or exposed to USS. Data are 

represented as mean + SEM. *p < 0.05 
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Figure 4. Evidence for miR-19b regulation of circadian rhythm genes in human cohort samples and 

in cell culture studies. (a and b) Correlation between circulating miR-19b expression levels and 

circulating mRNA expression levels in male (blue) and female (red) participants in the early aftermath 

of MVC (n=90) (a) miR-19b correlation with RORA mRNA in individuals who developed PTWP 6 

months following trauma exposure (colored) versus those who recovered (gray), (b) miR-19b 

correlation with CLOCK mRNA, and (c) miR-19b correlation with NPAS2 mRNA. Expression levels 

represented on the y-axis represents RNA seq reads (x1000). Pearson correlation coefficients (r) and 

p values were calculated using bivariate analyses for male and female participants together (except 

for NPAS2, which is for female only), but regression lines are representative of males and females 

separately. (d-f) Dual luciferase reporter assays examining direct binding of miR-19b to (d) RORA, (e) 

CLOCK, and (f) NPAS2. Black bars indicate binding of miR-19b mimic or control mimic to wild type 

3’UTRs while gray bars represent binding of miR-19b or control mimic to 3’UTRs with miR-19b seed 

sites mutated as indicated. Predicted miR-19b – target hybrids are shown below each graph; RORA 

and CLOCK are predicted to have two miR-19b binding sites each.  

 

r = -0.434 
p = 0.007 

r = -0.350 

p = 0.031 

 

0 2 0 0 4 0 0 6 0 0

0

N P A S 2 e x p r e s s i o n

m
i
R

-
1

9
b

 
e

x
p

r
e

s
s

i
o

n

1

2

3

4

5

-

+

+

-

-

+

+

-

0 .5

1 .0

1 .5

R
e

la
t
iv

e
 L

u
c

if
e

r
a

s
e

 A
c

t
iv

it
y

M u ta n t N P A S 2  3 'U T R

m iR -1 9 b

c o n tr o l

N
P

A
S

2

N P A S 2  3 'U T R

3'UTR 5'    U    GUUU    UUUA         G 3'

             GGUU    UUGU    AUUUGCACA

             UCAA    AACG    UAAACGUGU

miR-19b 3' AG            UACC           5'

c

c 

f 

r = -0.655 

p = 0.029 

 



 
 

  Supplementary Table 1.  Pain-associated genes (n = 560) compiled from three established 

databases (PainNetworks,42 Algynomics,43 and PainGenes44).  These genes were used in 
bioinformatics analyses to determine which miRNA are predicted to target the genes vs. random sets 
of genes. 

ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM 
ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 
ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 
ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A 
AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1E 
CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL 
CALM2 CAMK2A CAMK2B CAMK4 CAT CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 
CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 
CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CREB1 
CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSNK1A1 CSNK1E CTSB CTSS CX3CL1 
CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DBH DBI DICER1 DISC1 DLG2 
DLG4 DPCR1 DPP4 DRD1 DRD2 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 
EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 
ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAM19A4 FGF2 FKBP5 FLOT1 
FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA4 
GABRA6 GABRB1 GABRB2 GABRB3 GABRG2 GAD1 GALR1 GBP1 GBP2 GCH1 GDNF GFAP 
GFRA2 GHR GHRHR GJA1 GLRA1 GLRA2 GLRA3 GLRA4 GLRB GNAO1 GNAQ GNAZ GNB2L1 
GNG5 GPR3 GPR55 GPSM3 GRASP GRIA1 GRIA2 GRIA4 GRIN1 GRIN2A GRIN2B GRIN2D 
GRIN3A GRIN3B GRK5 GRK6 GRK7 GRM1 GRM2 GRM4 GRM5 GRN GRP GUCY1B3 HCN1 HCN2 
HCRT HDAC4 HDC HIF1A HINT1 HMGB1 HMOX2 HN1 HNRNPD HNRNPU HOXB8 HRH1 
HSD17B8 HSPA8 HSPA9 HTR2A HTR2C IAPP ICA1 IER3 IFNG IFRD1 IGF1 IKBKAP IKBKB IKBKE 
IL10 IL13 IL17A IL1A IL1R1 IL1RAP IL1RN IL2 IL21R IL22RA2 IL2RA IL2RB IL33 IL4 IL6 IL6ST IL7R 
INADL IRF8 ITPR1 JUN KCNA1 KCNA2 KCND2 KCNIP3 KCNJ11 KCNJ3 KCNJ5 KCNJ6 KCNJ8 
KCNJ9 KCNK10 KCNK2 KCNK3 KCNK9 KCNS1 KCNT1 KCTD17 KIF1A KIT KLF11 KLF7 KRAS 
L1CAM LAMA4 LEP LEPR LGALS1 LMX1B LPAR1 LPAR3 LPAR5 LRP1 LTA LTB LYN LYST MAOA 
MAOB MAP2K1 MAP2K3 MAP3K8 MAPK1 MAPK10 MAPK11 MAPK14 MAPK3 MAPK8 MAPK9 
MAPT MCCD1 MCF2L MDC1 MECP2 MGLL MIF MME MMP24 MPDZ MPZ MSNMTDH MTHFR 
MUC21 MYD88 NAV2 NBL1 NCAM1 NDN NEDD4L NF1 NFE2L2 NFKB1 NFKBIA NFKBIZ NGF 
NGFR NLGN2 NLRP3 NOS1 NOVA1 NOX1 NPEPPS NPPC NPTX1 NPY1R NPY2R NR2C2 NR2F6 
NR3C1 NR4A1 NRG1 NRM NT5E NTF3 NTRK2 NTRK3 NTSR1 NTSR2 OPRK1 OPRL1 OSM OXTR 
P2RX2 P2RX3 P2RX5 P2RX7 P2RY1 P2RY13 P2RY2 P2RY6 PACSIN1 PAK7 PAWR PBX2 PCSK2 
PCSK6 PDGFB PDYN PER1 PER2 PIK3CA PIK3CB PIK3CG PIP5K1A PIP5K1B PIP5K1C PIRT 
PLA2G4A PLCB1 PLCB3 PLCB4 PLCG1 PLCL1 PLP1 PMP22 PNOC POMC POU5F1 PPARA 
PPARG PPP1R1B PPP1R9B PPP3CA PPP3R1 PPP3R2 PPT2 PRKAA2 PRKACA PRKACB 
PRKAG2 PRKAR1B PRKCA PRKCB PRKCD PRKCE PRKD1 PRKD3 PRKG1 PRLR PRNP PROK2 
PRRT1 PRX PSMB8 PSMB9 PTAFR PTGDR PTGER2 PTGER3 PTGER4 PTGFR PTGIR PTGS1 
PTGS2 PTN PTPRZ1 RAB5A RABGGTA RAD52 RAF1 RAP1A RASD2 RELA RELN RET RGS2 
RGS4 RGS9 RNF5 RPS6KA3 RUNX1 RUNX2 RUNX3 RXRB S100A10 S100B S1PR3 SCD SCN10A 
SCN1A SCN2A SCN2B SCN3A SCN5A SCN8A SCN9A SESN2 SET SGK1 SHC1 SIGMAR1 
SLC12A2 SLC12A5 SLC12A6 SLC15A2 SLC17A6 SLC17A7 SLC17A8 SLC18A2 SLC1A3 SLC29A1 
SLC32A1 SLC39A7 SLC6A1 SLC6A11 SLC6A3 SLC6A4 SLC6A6 SOD2 SPARC SPP1 SPTLC1 
SRD5A1 SRR STARD13 STAU1 STAU2 STK39 STOML3 STX1A TAC1 TAC4 TACR1 TACR3 TAP1 
TAP2 TCF19 TCIRG1 TGFB1 TH THBS4 TLR3 TLR4 TLR5 TLR9 TMSB10 TMSB4X TNF TNFAIP3 
TNFRSF1A TNFRSF1B TNXB TRIM10 TRIM26 TRPA1 TRPM3 TRPV2 TRPV3 TRPV4 TUBB 
TYRP1 UCP2 VDR VEGFA VIP VPS4A VPS4B VPS52 WNK1 YWHAZ YY1 ZEB2 ZFAND5 ZFAND6 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Table 2. PTS- (or related neuropsychiatric disorder) associated genesa (n = 154) 

identified using a systematic literature review as described in methods. These genes were used in 
bioinformatics analyses to determine which miRNA are predicted to target the genes vs. random sets 
of genes.  

ADRA1A, ADRA1B, ADRA2A, ADRA2B, ADRA2C, ADRB2, ADRBK2, ARRB2, COMT, SLC6A2, TH 
CNR1, FAAH, ARNTL, BHLHB2, CCK, CCKAR, CLOCK, HCRTR1, NPAS2, OPN4, PER1, PER2, 
PER3, RORA, RORB, TIMELESS, TEF, DBH, DRD1, DRD2, DRD3, DRD4, DBI, GABBR1, GABRA1, 
GABRA2, GABRA3, GABRA6, GABRB1, GABRB2, GABRB3, GAD1, GAD2, SLC6A11, ANK3, 
CAMK2A, DAO, DAOA, GRIK1, GRIK4, GRIN1, GRIN2A, GRIN2B, GRM1, SLC1A1, ADCYAP1, 
ADCYAP1R1, CCKBR, CLPS, CPS1, CRH, CRHBP, CRHR1, CRHR2, FKBP5, GAL, NPY, NPY1R, 
NPY2R, NPY5R, NR3C1, NR3C2, SLC18A1, TULP1, ACE1, ACHE, F5, IL10, IL17, IL18, IL1A, IL1B, 
IL1R2, IL1RN, IL2, IL6, IL8, TNF, TNFRSF1A, OPRD1, OPRK1, OPRL1, OPRM1, PDYN, PENK, 
PNOC, POMC, BDNF, OXT, OXTR, PRL, TAC1, HTR1A, HTR1B, HTR2A, HTR2C, HTR3A, HTR3B, 
MAOA, MAOB, SLC6A3, SLC6A4, TPH1, TPH2, AMTN, ARAP3, CACNA1C, CSMD1, CTSF, 
DICER1, DGKH, EGFR, FGF1, FGF2, FGFR2, GDA, GFOD1, HYI, ITIH1, JAM3, KCNT2, KLHL13, 
KIT, MAMDC1, MCTP1, MYO5B, NFIA, PDE4D, PLSCR4, PTN, PTPRG, REG3A, RBMS3, SORCS2, 
STAB1, SYNE1, TCF4, TDRD9, TECTA, TMEM16C, TMEM16D, TRDN, TSPAN8, VGCNL1 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Table 3. Primers used in the study 

Primer Sequence Construct 

F-CLOCK CATGACCTCGAGTTACAGGTGTGAGCACCTTTCC pL-SV40-GL3-CLOCK-3’UTR 

R-CLOCK CATGACGCGGCCGCACCTCCAGTCCAAGAGACTGAT pL-SV40-GL3-CLOCK-3’UTR 

F-NPAS2 CATGACCTCGAGAGTCGGGACACAATCAGCTT pL-SV40-GL3-NPAS2-3’UTR 

R-NPAS2 CATGACGCGGCCGCTGGAATGTTGGCTGGCATGA pL-SV40-GL3-NPAS2-3’UTR 

F-RORA ACTACTCTCGAGTCTTTTGGTGATCGGGGTCA pL-SV40-GL3-RORA-3’UTR 

R-RORA ACTACTGCGGCCGCTTCCCTCACCCTCCTATCCA pL-SV40-GL3-RORA-3’UTR 

F-CLOCK-mutA AGGATTGGTACCGCTTTATTTTAGGTGGCTG pL-SV40-GL3-CLOCKmutA-3’UTR 

R-CLOCK-mutA GCGGTACCAATCCTATTTTCAAACATAATTG pL-SV40-GL3-CLOCKmutA-3’UTR 

F-CLOCK-mutB AAATTGGTACCCAAAACATCTTAGGCACTTT pL-SV40-GL3-CLOCKmutB-3’UTR 

R-CLOCK-mutB TTTGGGTACCAATTTTACCTCTATAACTGAAAC pL-SV40-GL3-CLOCKmutB-3’UTR 

F-NPAS2-mut TAATTGGTACCGCTACACAGAGGAAATAACT pL-SV40-GL3-NPAS2mut-3’UTR 

R-NPAS2-mut GTAGCGGTACCAATTAAAACAAAAACAACCATT pL-SV40-GL3-NPAS2mut-3’UTR 

F-RORA-mutA TTACTTGGTACCACTAGCTCTTTGTTTCATGA pL-SV40-GL3-RORAmutA-3’UTR 

R-RORA-mutA TAGTGGTACCAAGTAATGCCGCAACCTCCGCT pL-SV40-GL3-RORAmutA-3’UTR 

F-RORA-mutB TCATTTGGTACCTTTTTCTTTAAATTAAATGC pL-SV40-GL3-RORAmutB-3’UTR 

R-RORA-mutB AAAAGGTACCAAATGAAAGTGCCTTATCAATT pL-SV40-GL3-RORAmutB-3’UTR 



 
 

 

 

 

miR-19a    -UGUGCAAAUCUAUGCAAAACUGA-- 13q.31.3 

miR-19b-1  -UGUGCAAAUCCAUGCAAAACUGA-- 13Q.31.3 

miR-19b-2  -UGUGCAAAUCCAUGCAAAACUGA-- Xq26.2 

  

Supplementary Figure 1. miR-19 genomic loci and sequences. a) miR-19a and miR-19b-1 are 

expressed as part of the miR-17-92 polycistronic miRNA cluster on chromosome 13. miR-19b-2 is 

expressed as part of the miR-106a-363 miRNA cluster on the X chromosome. b) the sequence of 

miR-19a and miR-19b miRNAs are identical except for one nucleotide that is shown in bold font. The 

miR-19 seed sequence is greyed.  

a 
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Supplementary Table 4. miR-19b expression levels in male and female individuals who develop  

Posttraumatic Stress symptoms (PTSS) or Posttraumatic Widespread Pain (PTWP) six months 
after Motor Vehicle Collision versus those who recover. 

 Male (n = 58) Female (n = 95) 

 miR-19b expression in 
individuals developing PTSS or 

PTWP/ recover (Fold Diff)a 
p valueb 

miR-19b expression in 
individuals developing PTSS or 

PTWP/ recover (Fold Diff)a 
p valueb 

PTSS 5099 / 3579 (1.42) 0.039 2787 / 3906 (-1.40) 0.044 

PTWP 4915 / 3396 (1.45) 0.113 2648 / 3832 (-1.45) 0.026 
aFold difference was determined by dividing the mean sequencing reads in individuals who developed PTSS or PTWP  
by the mean sequencing reads in individuals who recovered. bp values were determined using Student’s T-tests. 



 
 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Table 5. Logistic regression models examining the relationship 
between Emergency Department levels of miR-19a expression and  
Posttraumatic Stress Symptoms (PTSS) or Posttraumatic Widespread Pain 
(PTWP) six months after Motor Vehicle Collision (n = 152).   

 PTSS PTWP 

Variablea OR (95% CI)b p value OR (95% CI)b p value 

miR-19a 0.84 (0.34, 2.09) 0.704 0.53 (0.19, 1.49) 0.228 

     x stress 0.99 (0.95, 1.02) 0.418 1.00 (0.97, 1.04) 0.831 

     x sex 2.65 (1.11, 6.32) 0.028 2.43 (1.05, 5.65) 0.039 

Stress 1.07 (1.01, 1.13) 0.016 1.05 (0.99, 1.11) 0.066 

Sex 0.82 (0.23, 2.95) 0.762 0.42 (0.12, 1.52) 0.187 

Age 1.01 (0.97, 1.05) 0.615 1.03 (0.99, 1.07) 0.094 
aSite was also included in the model as a categorical variable. bOR = odds ratio, CI = confidence 
interval.  



 
 

  

Supplementary Figure 2. Relative expression of miR-19b in blood and tissue samples relevant to 

pain/stress/PTS. a) Blood expression levels (“Circ”) were measured in male and female human (n = 

26) and animal (n ≥ 12) samples; tissue expression levels were measured in rats only. Expression 

levels of miR-19b were assayed using RT-qPCR and expressed as normalized average cycle 

threshold values subtracted from the total number of cycles. Therefore, the lowest levels of expression 

are in DRG and peripheral nerve tissues. b) Relative expression of miR-19b in male (blue bars) and 

female (red bars) human and animal tissues. Results are the average of technical duplicates and 

standard errors represent error across all humans and animals assayed. DRG = dorsal root ganglion. 
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Supplementary Figure 3. Effect of 17β-estradiol stimulation of primary dorsal root ganglia neurons 

on miR-19b expression levels. CGRP mRNA expression levels were measured as a positive control. 

miR-19b expression levels decreased 3 hours following stimulation with 17β-estradiol while CGRP 

mRNA expression levels increased. Expression levels of each RNA were measured using RT-qPCR; 

miR-19b expression changes were also validated using a microarray. Error bars represent the 

average of biological duplicates performed in technical duplicate. Statistical significance (* p < 0.05) 

represents significant difference in expression relative to baseline (“control”, no estradiol added). 

 



 
 

 

 

 
 

 

 

Supplementary Table 6.  Gene Ontology* relationships of miR-19b predicted targets (from pain and 

posttraumatic stress symptoms gene lists) 

Gene Ontology 
# 

Genes 
Fold 

Enrichment 
P value List of genes 

GO:0048511 
rhythmic process 

8 9.867 1.5x10-5 
NPAS2, EGR3, EREG, GRIN2A, PER1, CHRNB2, CLOCK, 
OPN4 

GO:0050896 
response to 

stimulus 
 

43 1.938 2.9x10-6 

PPARA, IL1R1, ERBB4, IL6ST, NPY2R, DICER1, GJA1, KIT, 
EDNRB, PLCL1, NPAS2, TNFRSF1B, KRAS, CNR1, IL1RAP, 
VPS4B, PER1, STK39, PRKACB, PRKAA2, PLCB1, GHR, SGK1, 
PIK3CB, MAP2K3, NF1, ESR1, GRIN2A, IGF1, CNGA3, HDAC4, 
MAPK1, GRM4, HIF1A, ADRB1, GNAQ, EREG, MAPK14, 
CHRNB2, MAPK8, CACNA1C, CLOCK, OPN4 

GO:0032502 
developmental 

process 
37 1.856 7.4x10-5 

ZFAND5, PPARA, GDA, ERBB4, DICER1, ANO1, GJA1, KIT, 
RORA, EPHB3, EDNRB, NPAS2, KRAS, EGF, RUNX3, GHR, 
KLF7, EGR3, PIK3CB, YY1, NF1, SCN2A, EFNB2, FMR1, 
GRIN2A, IGF1, HDAC4, MAPK1, HIF1A, ADRB1, EREG, GNAQ, 
MAPK14, CHRNB2, MAPK8, SCN8A, CDH11 

GO:0051179 
localization 

35 1.846 1.5x10-4 

ZFAND5, PPARA, SCN3A, GABRB2, GLRA3, ANO1, NR3C2, 
GJA1, ATP6V1B2, KIT, KCNK10, EDNRB, KRAS, ANO3, VPS4B, 
GHR, TRPM3, SGK1, SLC6A11, SCN2A, FMR1, WNK1, 
GRIN2A, CNGA3, KCNK2, MAPK1, GRM4, HIF1A, SLC17A6, 
KCNJ6, SLC6A6, CHRNB2, SCN8A, CLCN6, CACNA1C 

GO:0032501 
multicellular 
organismal 

process 
 

48 1.771 5.8x10-6 

ZFAND5, PPARA, GDA, ERBB4, GABRB2, GLRA3, DICER1, 
ANO1, NR3C2, GJA1, RORA, KIT, EPHB3, EDNRB, NPAS2, 
KRAS, CSF2RB, PLCB1, EGF, RUNX3, GHR, KLF7, EGR3, 
PIK3CB, YY1, MAP2K3, NF1, SCN2A, EFNB2, FMR1, GRIN2A, 
IGF1, CNGA3, HDAC4, MAPK1, GRM4, ADRB1, HIF1A, 
SLC17A6, GNAQ, EREG, MAPK14, CHRNB2, MAPK8, SCN8A, 
CACNA1C, CDH11, OPN4 

GO:0065007 

biological 

regulation 
67 1.413 2.1x10-5 

PPARA, FOSL2, IL6ST, DICER1, GJA1, RORA, KCNK10, 
EDNRB, IL1RAP, PIK3CA, CSF2RB, PRKACB, PLCB1, GHR, 
EGR3, PIK3CB, YY1, MECP2, ESR1, GRIN2A, WNK1, CNGA3, 
HNRNPU, MCTP1, MAPK1, GRM4, ADRB1, HIF1A, GNAQ, 
EREG, MAPK8, TNFAIP3, CLOCK, ZFAND6, IL1R1, ERBB4, 
NPY2R, NR3C2, KIT, EPHB3, PLCL1, NPAS2, TNFRSF1B, 
KRAS, CNR1, HNRNPD, PER1, ETV1, PRKAA2, EGF, RUNX3, 
KLF7, MAP2K3, NF1, RAF1, IGF1, HDAC4, SLC17A6, MAPK14, 
GRK6, RAP1A, CHRNB2, SCN8A, CACNA1C, CLCN6, NFIA, 
OPN4 

*determined using DAVID: https://david.ncifcrf.gov/home.jsp 


