1,810 research outputs found

    The Quantum State of an Ideal Propagating Laser Field

    Full text link
    We give a quantum information-theoretic description of an ideal propagating CW laser field and reinterpret typical quantum-optical experiments in light of this. In particular we show that contrary to recent claims [T. Rudolph and B. C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)], a conventional laser can be used for quantum teleportation with continuous variables and for generating continuous-variable entanglement. Optical coherence is not required, but phase coherence is. We also show that coherent states play a priveleged role in the description of laser light.Comment: 4 pages RevTeX, to appear in PRL. For an extended version see quant-ph/011115

    One Loop Renormalization of the Littlest Higgs Model

    Get PDF
    In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.Comment: 23 pages, 17 eps figure

    Trust in Peer-to-Peer content distribution protocols

    Get PDF
    Abstract. The distribution of virtual goods like multimedia data relies on the trustworthiness of the distribution system. Recent concepts for the distribution based on peer to peer networks like BitTorrent require new approaches to establish the needed level of trust in the overall functionality of the system. This paper explores the integration of hardware based trust concepts from the domain of Trusted Computing in the well know BitTorrent protocol suite

    Degradation of a quantum directional reference frame as a random walk

    Get PDF
    We investigate if the degradation of a quantum directional reference frame through repeated use can be modeled as a classical direction undergoing a random walk on a sphere. We demonstrate that the behaviour of the fidelity for a degrading quantum directional reference frame, defined as the average probability of correctly determining the orientation of a test system, can be fit precisely using such a model. Physically, the mechanism for the random walk is the uncontrollable back-action on the reference frame due to its use in a measurement of the direction of another system. However, we find that the magnitude of the step size of this random walk is not given by our classical model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to clarify the key results. v3: journal reference added, acknowledgements and references update

    Defending Continuous Variable Teleportation: Why a laser is a clock, not a quantum channel

    Get PDF
    It has been argued [T. Rudolph and B.C. Sanders, Phys. Rev. Lett. {\bf 87}, 077903 (2001)] that continuous-variable quantum teleportation at optical frequencies has not been achieved because the source used (a laser) was not `truly coherent'. Van Enk, and Fuchs [Phys. Rev. Lett, {\bf 88}, 027902 (2002)], while arguing against Rudolph and Sanders, also accept that an `absolute phase' is achievable, even if it has not been achieved yet. I will argue to the contrary that `true coherence' or `absolute phase' is always illusory, as the concept of absolute time (at least for frequencies beyond direct human experience) is meaningless. All we can ever do is to use an agreed time standard. In this context, a laser beam is fundamentally as good a `clock' as any other. I explain in detail why this claim is true, and defend my argument against various objections. In the process I discuss super-selection rules, quantum channels, and the ultimate limits to the performance of a laser as a clock. For this last topic I use some earlier work by myself [Phys. Rev. A {\bf 60}, 4083 (1999)] and Berry and myself [Phys. Rev. A {\bf 65}, 043803 (2002)] to show that a Heisenberg-limited laser with a mean photon number μ\mu can synchronize MM independent clocks each with a mean-square error of M/4μ\sqrt{M}/4\mu radians2^2.Comment: 22 pages, to be published in a special issue of J. Opt. B. This is an extended version of quant-ph/0303116 (the SPIE conference paper

    Ion beam lithography for Fresnel zone plates in X-ray microscopy

    Full text link
    Fresnel Zone Plates (FZP) are to date very successful focusing optics for X-rays. Established methods of fabrication are rather complex and based on electron beam lithography (EBL). Here, we show that ion beam lithography (IBL) may advantageously simplify their preparation. A FZP operable from the extreme UV to the limit of the hard X-ray was prepared and tested from 450 eV to 1500 eV. The trapezoidal profile of the FZP favorably activates its 2nd order focus. The FZP with an outermost zone width of 100 nm allows the visualization of features down to 61, 31 and 21 nm in the 1st, 2nd and 3rd order focus respectively. Measured efficiencies in the 1st and 2nd order of diffraction reach the theoretical predictions

    Quantum Physics from A to Z

    Full text link
    This is a collection of statements gathered on the occasion of the Quantum Physics of Nature meeting in Vienna.Comment: 3 pages, Quantum Physics of Nature (QUPON) Conference, Vienna, Austria, May 22nd-26th, 2005; v4: more contribution
    corecore