8 research outputs found

    Two-resonator circuit QED: Dissipative Theory

    Full text link
    We present a theoretical treatment for the dissipative two-resonator circuit quantum electrodynamics setup referred to as quantum switch. There, switchable coupling between two superconducting resonators is mediated by a superconducting qubit operating in the dispersive regime, where the qubit transition frequency is far detuned from those of the resonators. We derive an effective Hamiltonian for the quantum switch beyond the rotating wave approximation and study the dissipative dynamics within a Bloch-Redfield quantum master equation approach. We derive analytically how the qubit affects the quantum switch even if the qubit has no dynamics, and we estimate the strength of this influence. The analytical results are corroborated by numerical calculations, where coherent oscillations between the resonators, the decay of coherent and Fock states, and the decay of resonator-resonator entanglement are studied. Finally, we suggest an experimental protocol for extracting the damping constants of qubit and resonators by measuring the quadratures of the resonator fields.Comment: 17 pages, 9 figure

    Old Drawings for New Students

    No full text

    Literatur

    No full text
    corecore