49 research outputs found

    Evaluation of cross-linked aggregates from purified Bacillus subtilis levansucrase mutants for transfructosylation reactions

    Get PDF
    BACKGROUND: Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS) catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs) were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts. RESULTS: Two types of procedures were used for the preparation of biocatalysts from purified wild type LS (WT LS) B. subtilis and the R360K and Y429N LS mutants: purified enzymes aggregated with glutaraldehyde (cross-linked enzyme aggregates: CLEAs), and covalently immobilized enzymes in Eupergit C(®). The biocatalysts were characterized and used for fructoside synthesis using xylose as an acceptor model. CLEAs were able to catalyze the synthesis of fructosides as efficiently as soluble enzymes. The specific activity of CLEAs prepared from wild type LS (44.9 U/mg of CLEA), R360K (56.5 U/mg of CLEA) and Y429N (1.2 U/mg of CLEA) mutants were approximately 70, 40 and 200-fold higher, respectively, than equivalent Eupergit C(® )immobilized enzyme preparations (U/mg of Eupergit), where units refer to global LS activity. In contrast, the specific activity of the free enzymes was 160, 171.2 and 1.5 U/mg of protein, respectively. Moreover, all CLEAs had higher thermal stability than corresponding soluble enzymes. In the long term, the operational stability was affected by levan synthesis. CONCLUSION: This is the first report of cross-linked transglycosidases aggregates. CLEAs prepared from purified LS and mutants have the highest specific activity for immobilized fructosyltransferases (FTFs) reported in the literature. CLEAs from R360K and Y429N LS mutants were particularly suitable for fructosyl-xyloside synthesis as the absence of levan synthesis decreases diffusion limitation and increases operational stability

    Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Get PDF
    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop

    De novo assembly and transcriptome characterization of the freshwater prawn Palaemonetes argentinus: Implications for a detoxification response

    Get PDF
    Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies.Instituto de Investigaciones Bioquímicas de La PlataInstituto de Limnología "Dr. Raúl A. Ringuelet

    Crystallographic Studies Evidencing the High Energy Tolerance to Disrupting the Interface Disulfide Bond of Thioredoxin 1 from White Leg Shrimp Litopenaeus vannamei

    No full text
    Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Ã…2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx

    Experimental determination of the radiation dose limit for cryocooled protein crystals

    No full text
    Radiation damage to cryocooled protein crystals during x-ray structure determination has become an inherent part of macromolecular diffraction data collection at third-generation synchrotrons. Generally, radiation damage is an undesirable component of the experiment and can result in erroneous structural detail in the final model. The characterization of radiation damage thus has become an important area for structural biologists. The calculated dose limit of 2 × 10(7) Gy for the diffracting power of cryocooled protein crystals to drop by half has been experimentally evaluated at a third-generation synchrotron source. Successive data sets were collected from four holoferritin and three apoferritin crystals. The absorbed dose for each crystal was calculated by using the program raddose after measurement of the incident photon flux and determination of the elemental crystal composition by micro-particle-induced x-ray emission. Degradation in diffraction quality and specific structural changes induced by synchrotron radiation then could be compared directly with absorbed dose for different dose/dose rate regimes: a 10% lifetime decrease for a 10-fold dose rate increase was observed. Remarkable agreement both between different crystals of the same type and between apoferritin and holoferritin was observed for the dose required to reduce the diffracted intensity by half (D(1/2)). From these measurements, a dose limit of D(1/2) = 4.3 (±0.3) ×10(7) Gy was obtained. However, by considering other data quality indicators, an intensity reduction to I(ln2) = ln2 × I(0), corresponding to an absorbed dose of 3.0 × 10(7) Gy, is recommended as an appropriate dose limit for typical macromolecular crystallography experiments

    Evaluation of cross-linked aggregates from purified <it>Bacillus subtilis </it>levansucrase mutants for transfructosylation reactions

    No full text
    Abstract Background Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS) catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs) were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts. Results Two types of procedures were used for the preparation of biocatalysts from purified wild type LS (WT LS) B. subtilis and the R360K and Y429N LS mutants: purified enzymes aggregated with glutaraldehyde (cross-linked enzyme aggregates: CLEAs), and covalently immobilized enzymes in Eupergit C®. The biocatalysts were characterized and used for fructoside synthesis using xylose as an acceptor model. CLEAs were able to catalyze the synthesis of fructosides as efficiently as soluble enzymes. The specific activity of CLEAs prepared from wild type LS (44.9 U/mg of CLEA), R360K (56.5 U/mg of CLEA) and Y429N (1.2 U/mg of CLEA) mutants were approximately 70, 40 and 200-fold higher, respectively, than equivalent Eupergit C® immobilized enzyme preparations (U/mg of Eupergit), where units refer to global LS activity. In contrast, the specific activity of the free enzymes was 160, 171.2 and 1.5 U/mg of protein, respectively. Moreover, all CLEAs had higher thermal stability than corresponding soluble enzymes. In the long term, the operational stability was affected by levan synthesis. Conclusion This is the first report of cross-linked transglycosidases aggregates. CLEAs prepared from purified LS and mutants have the highest specific activity for immobilized fructosyltransferases (FTFs) reported in the literature. CLEAs from R360K and Y429N LS mutants were particularly suitable for fructosyl-xyloside synthesis as the absence of levan synthesis decreases diffusion limitation and increases operational stability.</p
    corecore