2,119 research outputs found

    Non-axisymmetric oscillations of stratified coronal magnetic loops with elliptical cross-sections

    Full text link
    We study non-axisymmetric oscillations of a straight magnetic tube with an elliptic cross-section and density varying along the tube. The governing equations for kink and fluting modes in the thin tube approximation are derived. We found that there are two kink modes, polarised along the large and small axes of the elliptic cross-section. We have shown that the ratio of frequencies of the first overtone and fundamental harmonic is the same for both kink modes and independent of the ratio of the ellipse axes. On the basis of this result we concluded that the estimates of the atmospheric scale height obtained using simultaneous observations of the fundamental harmonic and first overtone of the coronal loop kink oscillations are independent of the ellipticity of the loop cross-section

    Nonstationary driven oscillations of a magnetic cavity

    Get PDF
    The problem of transition to the steady state of driven oscillations in a magnetic cavity in a cold resistive plasma is addressed. The foot point driving polarized in the inhomogeneous direction is considered, and it is assumed that the cavity length in the direction of the equilibrium magnetic field is much larger than the cavity width in the inhomogeneous direction. The latter assumption enables one to neglect the variation of the magnetic pressure in the inhomogeneous direction, which strongly simplifies the analysis. The explicit solution describing the nonstationary behavior of the magnetic pressure and the velocity is obtained. This solution is used to study the properties of the transition to the steady state of oscillation. The main conclusion is that, in general, there are two different characteristic transitional times. The first time is inversely proportional to the decrement of the global mode. It characterizes the transition to the steady state of the global motion, which is the coherent oscillation of the cavity in the inhomogeneous direction. The second time is the largest of the two times, the first transitional time and the phase-mixing time, which is proportional to the magnetic Reynolds number in 1/3 power. It characterizes the transition to the steady state of the local motion, which is oscillations at the local Alfvén frequencies, and the saturation of the energy damping rate. An example from solar physics shows that, in applications, the second transitional time can be much larger than the first one

    Soft x ray properties of the Geminga pulsar

    Get PDF
    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column density, and also by the requirement that the Rayleigh-Jeans extrapolation of the soft x ray spectrum not exceed the observed blue flux of the faint optical counterpart. This distance estimate implies that Geminga's efficiency for converting spindown power into gamma-rays is near unity, and that there may be significant beaming of the gamma rays as well. These results tend to bolster the prospect that most of the unidentified high-energy gamma ray sources in the Galactic plane are pulsars, some of which may be radio quiet

    Torsional Alfvén waves: magneto-seismology in static and dynamic coronal plasmas

    Get PDF
    Aims: We study the properties of torsional Alfvén waves in coronal loops so that they may be exploited for coronal seismological applications. Methods: The governing equation is obtained for standing torsional Alfvén waves of a dynamic, gravitationally stratified plasma. The footpoints are assumed to obey line-tying conditions necessary for standing oscillations. Solutions are found in a number of different but typical scenarios to demonstrate the possibilities for both temporal and spatial magneto-seismology exploitation of waveguides with the standing torsional Alfvén oscillations. Results: It is found that the frequency of the standing Alfvén oscillation increases as the stratification of the plasma increases. The ratio of the periods of the fundamental modeand the first overtone is also found to change as the stratification of the plasma increases. Further, the eigenfunctions of the higher overtones of the standing oscillations are found to experience a shift of their anti-nodes. The influence of a dynamic plasma on the amplitudes of the mode is also investigated. The amplitude of the torsional Alfvén mode is found to increase as the plasma within the coronal loop experiences cooling

    The Origin of the Spatial Distribution of X-ray luminous AGN in Massive Galaxy Clusters

    Full text link
    We study the spatial distribution of a 95% complete sample of 508 X-ray point sources (XPS) detected in the 0.5-2.0 keV band in Chandra ACIS-I observations of 51 massive galaxy clusters found in the MACS survey. Covering the redshift range z=0.3-0.7, our cluster sample is statistically complete and comprises all MACS clusters with X-ray luminosities in excess of 4.5 x 10^44 erg/s (0.1-2.4 keV, h_0=0.7, LCDM). Also studied are 20 control fields that do not contain clusters. We find the XPS surface density, computed in the cluster restframe, to exhibit a pronounced excess within 3.5 Mpc of the cluster centers. The excess, believed to be caused by AGN in the cluster, is significant at the 8.0 sigma confidence level compared to the XPS density observed at the field edges. No significant central excess is found in the control fields. To investigate the physical origin of the AGN excess, we study the radial AGN density profile for a subset of 24 virialized clusters. We find a pronounced central spike (r<0.5 Mpc), followed by a depletion region at about 1.5 Mpc, and a broad secondary excess centered at approximately the virial radius of the host clusters (~2.5 Mpc). We present evidence that the central AGN excess reflects increased nuclear activity triggered by close encounters between infalling galaxies and the giant cD-type elliptical occupying the very cluster center. By contrast, the secondary excess at the cluster-field interface is likely due to black holes being fueled by galaxy mergers. In-depth spectroscopic and photometric follow-up observations of the optical counterparts of the XPS in a subset of our sample are being conducted to confirm this picture.Comment: ApJ Letters, accepted (4 pages, 3 figures, uses emulateapj

    The Weak Scale from BBN

    Full text link
    The measured values of the weak scale, vv, and the first generation masses, mu,d,em_{u,d,e}, are simultaneously explained in the multiverse, with all these parameters scanning independently. At the same time, several remarkable coincidences are understood. Small variations in these parameters away from their measured values lead to the instability of hydrogen, the instability of heavy nuclei, and either a hydrogen or a helium dominated universe from Big Bang Nucleosynthesis. In the 4d parameter space of (mu,md,me,v)(m_u,m_d,m_e,v), catastrophic boundaries are reached by separately increasing each parameter above its measured value by a factor of (1.4,1.3,2.5,5)(1.4,1.3,2.5,\sim5), respectively. The fine-tuning problem of the weak scale in the Standard Model is solved: as vv is increased beyond the observed value, it is impossible to maintain a significant cosmological hydrogen abundance for any values of mu,d,em_{u,d,e} that yield both hydrogen and heavy nuclei stability. For very large values of vv a new regime is entered where weak interactions freeze out before the QCD phase transition. The helium abundance becomes independent of vv and is determined by the cosmic baryon and lepton asymmetries. To maintain our explanation of vv from the anthropic cost of helium dominance then requires universes with such large vv to be rare in the multiverse. Implications of this are explored, including the possibility that new physics below 10 TeV cuts off the fine-tuning in vv.Comment: 26 pages plus appendix, 13 figure

    Cooling of pulsars

    Get PDF
    Cooling rates are calculated for superfluid neutron stars of about one solar mass and 10 km radius, with magnetic fields from zero to about 10 to the 14th power Gauss, when possible internal friction effects are neglected. The results show that most old pulsars are so cold that thermal ionization of surface atoms would be negligible. At an age of a million years and with canonical magnetic fields of 10 to the 12th power Gauss, the estimated stellar surface temperature is several thousand to a hundred thousand degrees. However, if we neglect magnetic fields and superfluid states of nucleons, the same surfaces would be about a million degrees
    corecore