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Nonstationary driven oscillations of a magnetic cavity
M. S. Rudermana) and A. N. Wrightb)

School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS, Scotland,
United Kingdom

~Received 14 April 2000; accepted 8 June 2000!

The problem of transition to the steady state of driven oscillations in a magnetic cavity in a cold
resistive plasma is addressed. The foot point driving polarized in the inhomogeneous direction is
considered, and it is assumed that the cavity length in the direction of the equilibrium magnetic field
is much larger than the cavity width in the inhomogeneous direction. The latter assumption enables
one to neglect the variation of the magnetic pressure in the inhomogeneous direction, which strongly
simplifies the analysis. The explicit solution describing the nonstationary behavior of the magnetic
pressure and the velocity is obtained. This solution is used to study the properties of the transition
to the steady state of oscillation. The main conclusion is that, in general, there are two different
characteristic transitional times. The first time is inversely proportional to the decrement of the
global mode. It characterizes the transition to the steady state of the global motion, which is the
coherent oscillation of the cavity in the inhomogeneous direction. The second time is the largest of
the two times, the first transitional time and the phase-mixing time, which is proportional to the
magnetic Reynolds number in13 power. It characterizes the transition to the steady state of the local
motion, which is oscillations at the local Alfve´n frequencies, and the saturation of the energy
damping rate. An example from solar physics shows that, in applications, the second transitional
time can be much larger than the first one. ©2000 American Institute of Physics.
@S1070-664X~00!04509-2#

I. INTRODUCTION

Magnetic cavities are common in solar and space phys-
ics. Well-known examples of magnetic cavities are the mag-
netospheric cavity and the solar coronal loops. Studying os-
cillations in magnetic cavities is important for explaining
such phenomena as excitation of ultra-low-frequency~ULF!

waves in the magnetosphere and solar coronal heating.
There are two scenarios of excitation of oscillations in

magnetic cavities. The first scenario is the so-called lateral
driving, where oscillations are excited by an incoming fast
magnetosonic wave. The second scenario is the foot point
driving. In this scenario oscillations are excited by driving
the magnetic field lines at one end of the cavity. In this
article we consider only the second scenario; however, from
the mathematical point of view, there is not very much dif-
ference between the two.

When the cavity is inhomogeneous in at least one spatial
direction perpendicular to the equilibrium magnetic field, the
eigenfrequencies of oscillations of different magnetic field
lines are different. These eigenfrequencies form the Alfve´n
continuum. More precisely, there is a countable set of Alfve´n
continua, the first of them formed by the fundamental fre-
quencies of the magnetic field lines, and the other by the
overtones. If such an inhomogeneous cavity is driven har-
monically, it is possible that the driving frequency matches

the local Alfvén frequency at some position. This position is
called the resonant position.

Let us consider a cavity inhomogeneous only in one spa-
tial direction in planar geometry, or in the radial direction in
cylindrical geometry. Let it be driven in the direction perpen-
dicular both to the inhomogeneity direction and to the equi-
librium magnetic field, by a driver that is independent of this
direction, in planar geometry, or in the azimuthal direction
by the axisymmetric driver in cylindrical geometry. Such a
driving excites purely Alfve´n oscillations. Initially, the mo-
tion of each magnetic field line is a superposition of two
oscillations: one with the driving frequency, and the other
with the local Alfvén frequency. Since the local Alfve´n fre-
quency varies in space oscillations of the neighboring mag-
netic field lines become more and more out of phase. This
process is called phase mixing.1 It causes the buildup of large
gradients, which leads to the efficient damping of the oscil-
lations with the local Alfve´n frequencies on the phase-
mixing time-scale proportional to R1/3. Here R is either the
viscous Reynolds number, or the magnetic Reynolds num-
ber, or the total Reynolds number in plasmas where both
viscosity and resistivity operate. After this transitional phase-
mixing time the cavity attains the steady state of driven os-
cillation, where all magnetic field lines oscillate with the
driving frequency. The amplitudes of these oscillations are of
the order of the driving amplitude everywhere except a nar-
row dissipative layer embracing the resonant position. The
thickness of this layer is proportional to R21/3, and the am-
plitude of oscillations in it to R1/3. The analytical solution
describing the steady state of driven Alfve´n oscillation in a
one-dimensional magnetic cavity has been given by Ruder-
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man et al.,2 and the transition to the steady state of oscilla-
tion has been studied by, e.g., Ruderman.3

In what follows we consider only one-dimensional mag-
netic cavities in planar geometry. When such a cavity is
driven in the inhomogeneous direction, this driving excites
fast waves. If, in addition, the driving amplitude varies in the
direction perpendicular both to the inhomogeneous direction
and to the equilibrium magnetic field, the fast waves interact
with Alfvén waves and excite the local Alfve´n oscillations.
This interaction is particularly strong near the resonant posi-
tion. After the transitional time the dissipative layer embrac-
ing this resonant position is formed. Once again its thickness
is proportional to R21/3, and the amplitude of oscillations in
it to R1/3. Now the motion in the dissipative layer is not
purely Alfvénic. It is a superposition of fast and Alfve´n
waves, however, the Alfve´nic component dominates. The so-
lution describing this motion was given by, e.g., Kappraff
and Tataronis,4 Davila,5 and Goossenset al.6 ~see also the
review paper by Goossens and Ruderman7!.

A very important property of magnetic cavities is the
existence of so-called global modes. The global modes are
the solutions to the eigenvalue problem for the linear dissi-
pative magnetohydrodynamic~MHD! equations character-
ized by the property that the imaginary parts of the corre-
sponding eigenvalues are much smaller than the real parts
~the eigenvalue problem is obtained by taken perturbations
of all quantities proportional toe2ivt). The complex eigen-
frequencies of the global modes tend to the limiting values
with nonzero imaginary parts in the limit of vanishing dissi-
pation. These global modes describe weakly damped free
oscillations of magnetic cavities.

It was Kivelson and Southwood8 who have first pointed
out the importance of the global modes for magnetospheric
physics. Since, in the magnetospheric cavity, different mag-
netic field lines oscillate with different frequencies, and
sources of excitation of MHD waves in the magnetosphere
have a broadband frequency spectrum, the resonant condi-
tion can be matched at an infinite number of geomagnetic
field lines. Thus, every field line should be in resonance for a
broad enough energy source. However, ground, ionospheric,
and space observations indicate the existence of only one or
a few resonant field line oscillations. Kivelson and
Southwood8 have suggested that a broadband source will
first excite one or a few magnetospheric global modes~more
precisely, the motion very close to that in a global mode
except in a vicinity of a resonant position!. These global
modes then act as drivers exciting large-amplitude ULF
waves at resonant positions. The global modes thus select the
frequency of the observed ULF waves. After this pioneering
work the global cavity modes remain very popular in mag-
netospheric physics. The selection of preferred frequencies
by global modes has been demonstrated in numerical work
for impulsive driving9 and random driving.10

In solar physics the importance of global modes is
mainly related to the problem of coronal heating. Since the
width of dissipative layers embracing ideal resonant posi-
tions is proportional to R1/3, in weakly dissipative plasmas
the wave motion in dissipative layers is characterized by the
presence of large spatial gradients, which causes strong wave

energy dissipation and, as a consequence, efficient plasma
heating. In the limit of vanishing dissipation the heating rate
is independent of dissipative coefficients. Strongly enhanced
wave energy dissipation in dissipative layers in weakly dis-
sipative plasmas is called resonant absorption. The possibil-
ity of efficient heating by wave energy dissipation even in
weakly dissipative plasmas has drawn considerable attention
of plasma physicists to resonant absorption. Ionson11 sug-
gested resonant absorption as a possible mechanism of heat-
ing of coronal loops. Since then resonant absorption has re-
mained a popular mechanism for explaining solar coronal
heating~e.g., Refs. 12–16!.

It turns out that the efficiency of resonant absorption
strongly depends on the driving frequency. It is most effi-
cient in the case of quasi-resonant driving, where the driving
frequency is close to the frequency of one of the global
modes~e.g., Refs. 17–20!. This fact has attracted the atten-
tion of scientists studying resonant MHD waves to global
modes~e.g., Refs. 21 and 22!.

Resonant absorption is essentially a stationary process.
However, nonstationary aspects in the theory of resonant
MHD waves are also very important. In magnetospheric
physics resonant waves are excited by the external driving
with a finite duration in time. It is very important to know
what is the maximum amplitude of the resonant oscillation
and the minimum spatial scale that can be reached during
this excitation. In solar physics the nonstationary behavior of
MHD waves is interesting because coronal magnetic struc-
tures~e.g., coronal loops! normally exist only for a period of
a few days or less. Resonant absorption can contribute into
heating of such structures only if the transitional time after it
starts to operate is shorter than the lifetime of these struc-
tures.

To the best of our knowledge the nonstationary behavior
of resonant MHD waves was first addressed by Kappraff and
Tataronis.4 These authors studied the transition to the steady
state of driven oscillation in the approximation of incom-
pressible plasmas, and showed that the characteristic transi-
tional time is the phase-mixing time proportional to R1/3.
After this time the dissipative layer is formed. Lee and
Roberts23 have studied the damping of a standing surface
wave on a thin transitional layer in an incompressible ideal
plasma. They have shown that the damping of the surface
wave occurs because its energy is transferred into a thin
energy-containing layer embracing the resonant position. In
ideal plasmas the energy does not dissipate. It is stored in the
energy-containing layer in the form of large-amplitude Al-
fvén waves. The transition to the steady state of driven os-
cillation in a magnetic cavity has then been studied numeri-
cally ~e.g., Refs. 24 and 25!.

In general, the transition to the steady state of driven
oscillation in a magnetic cavity can be studied only numeri-
cally. However, there is one exception. Hollweg26 has stud-
ied resonant absorption of MHD waves in a thin transition
layer, i.e., under the assumption that the wavelength of the
surface wave is much larger than the layer thickness. He
pointed out that in this case it is possible to neglect the
variation of the total pressure across the layer. This approxi-
mation enabled Hollweg to carry out the analysis for an ar-
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bitrary variation of the equilibrium density and magnetic
field in the layer. Hollweg studied a standing wave, which,
from the mathematical point of view, is completely equiva-
lent to studying oscillations of a magnetic cavity.

In this article we study the transition to the steady state
of driven oscillation in a thin magnetic cavity in a cold re-
sistive plasma using Hollweg’s approximation, i.e., neglect-
ing the variation of the total pressure across the cavity. The
paper is organized as follows. In the next section we formu-
late the problem, and derive equations that are used to study
oscillations of the magnetic cavity. In Sec. III we obtain the
solution describing the temporal evolution of the magnetic
pressure and the velocity in the cavity. In Sec. IV the global
modes of oscillation of the cavity are studied. In Sec. V the
transition to the steady state of driven oscillation is investi-
gated for the global motion of the cavity. In Sec. VI we
address the nonstationary behavior of the velocity. In Sec.
VII the energy dissipation rate is calculated. In Sec. VIII we
give a summary and our conclusions. In particular, we in-
cluded the table where the main results are collected.

II. DERIVATION OF GOVERNING EQUATIONS

We consider nonstationary oscillations of a magnetic
cavity, driven at one of its ends, in a cold plasma~see Fig. 1!.
The equilibrium magnetic fieldB is constant and in thez
direction of the Cartesian coordinatesx, y, z. The equilibrium
densityr is a function ofx. It is constant in region I deter-
mined byx,0, and in region II determined byx.a, and it
only varies in the slab determined by 0,x,a.

The plasma in the cavity is resistive; however, resistivity
is assumed to be weak, so it is only important in regions with
large spatial gradients. The plasma motion is governed by
the system of linearized MHD equations
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Herev5(u,v,0) is the velocity,b5(bx ,by ,bz) is the pertur-
bation of the magnetic field,P5Bbz /m is the perturbation of
the magnetic pressure,VA5B(mr)21/2 is the Alfvén speed,
h is the coefficient of magnetic field diffusion, andm is the
magnetic permeability of free space. In what follows we
shall see that large spatial gradients are only present in the
slab 0,x,a, and only in thex direction. This observation
enables us to neglect resistivity in regions I and II, and to
write ]2/]x2 instead of¹2.

The magnetic field lines are assumed to be frozen in the
infinitely conducting plasmas atz,0 andz.L. The plasma
in the regionz.L is immovable, while the plasma in the
regionz,0 moves with the velocityf (t,x) in thex direction
at z50. As a result we have the boundary conditions

u5 f ~ t,x !, v50, P50 at z50, ~6!

u50, v50, P50 at z5L. ~7!

Note that the boundary conditions forP are not independent.
They follow from the boundary conditions foru and v and
Eq. ~5! with ]2/]x2 substituted for¹2. In what follows we
assume that the characteristic scale of variation off is much
larger thana, so that we takef (t,x)' f (t,0) for 0,x,a.

We assume thatf 5] f /]t50 and the system is at rest for
t<0, so perturbations of all quantities and their first deriva-
tives with respect to time are zero att50.

Since the cavity is homogeneous in they direction, we
can Fourier analyze perturbations of all quantities and take
them proportional to exp(iky). Then, eliminatingbx and by

from Eqs.~1!–~4!, we obtain
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Elimination of v from Eqs.~5! and ~9!, and the use of Eq.
~8!, yields
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It follows from Eqs.~8! and~10! thatu andP also satisfy the
equation

]2P

]t2 2VA
2 S ]2P

]x2 1

]2P

]z2 2k2P D5VA
2 dr

dx

]u

]t
. ~11!

Equations~8!–~11! and the boundary conditions~6! and
~7! will be used in what follows to study the driven oscilla-
tions of the magnetic cavity. Note that Eqs.~8!–~11! are not
independent because there are four equations for three vari-

FIG. 1. The sketch of the equilibrium state. The dashed lines show the
perturbed boundaries of the magnetic cavity. The horizontal double arrow
shows the direction of the driving.
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ables. However, it turns out that Eq.~8! is suitable to deter-
mineu in regions I and II, while it is more convenient to use
Eq. ~10! to describeu in the inhomogeneous slab.

III. SOLUTION FOR THE MAGNETIC PRESSURE IN
THE INHOMOGENEOUS LAYER

Since the quantitiesv andP are zero atz50,L they can
be expanded into the Fourier series

v5 (
n51

`

vn~ t,x !sin~nlz !, P5 (
n51

`

Pn~ t,x !sin~nlz !,

~12!

wherel5p/L. To use a similar expansion foru we make the
variable substitution

u5U1S 12

z

L D f ~ t,x !. ~13!

Then the quantityU is zero atz50,L and can be expanded
into a Fourier series similar to Eq.~12!. The equations forU
are obtained from Eqs.~8! and ~10! by substitutingU for u,
and adding the terms (z/L21)]3f /]t3 and (z/L
21)]4f /]t3]x to the right-hand sides of Eqs.~8! and ~10!,
respectively.

In what follows the values of]Pn /]x calculated at the
boundaries of the inhomogeneous layer, i.e., atx50,a, play
an important role. In accordance with Appendix A these val-
ues are given by

]Pn

]x U
x5x j

5

~21! j11

VA j
E

0

tS d2Pn~x j!

dt2 1VA j
2 kn

2Pn~x j! D
3J0@VA jkn~ t2t !# dt, ~14!

whereJ0 is the Bessel function of the zeroth order,j51,2,
the subscripts ‘‘1’’ and ‘‘2’’ refer to regions I and II,x1

50, x25a, kn5(k2
1n2l2)1/2, andPn(x j)5Pn(x5x j).

As it has been already stated, we neglect resistivity in
regions I and II. Then, using Eq.~13! and the identity
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L
5
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sin~nlz !, ~15!

we obtain from Eq.~8!, rewritten in terms ofU, the equation
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The solution to this equation satisfying the initial conditions
Un5]Un /]t50 at t50 is
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VAnl
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This expression together with Eq.~14! determinesUn at x
50,a. Taking x5x j in Eq. ~17!, using Eq.~14!, integrating
by parts, and changing the order of integration in the second
term on the right-hand side of the obtained expression for
Un(x j), we arrive at

Un~x j!52
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t ] f

]t
cos@VA jnl~ t2t !# dt

1
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r jVA j
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3E
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In what follows we assume that the inhomogeneous
layer is thin,a!L, and we consider motions with the char-
acteristic timeL/VA . Then it follows from Eq.~11! that
]P/]x;P/L. This estimate implies thatP(t,x,z)5A(t,z)
1O(a/L) in the inhomogeneous layer, and we can takeP
independent ofx in the first-order approximation with re-
spect to the small parametera/L. This approximation sig-
nificantly simplifies the analysis. It was first used by
Hollweg26 and subsequently by Hollweg and Yang27 when
studying resonant absorption of MHD surface waves in a
thin inhomogeneous layer. SinceP does not vary across the
inhomogeneous layer, it is completely determined by its val-
ues at the layer boundaries,A(t,z)5P(t,0,z)5P(t,a,z).
Now Eq.~10! is an equation with the right-hand side known.
It determines]u/]x for 0,x,a. SubstitutingU andA ex-
panded as Fourier series with respect toz into Eq. ~10!, re-
written in terms ofU, we arrive at

S ]2

]t2 1~VAnl !2D ]2Un

]t]x
1h~VAnl !2

]3Un

]x3

52

1

rVA
2 S d2

dt2 1VA
2kn

2D d2An

dt2 . ~19!

When deriving this equation we have taken into account that
the variation of f across the inhomogeneous layer can be
neglected. Let us solve Eq.~19!. Since resistivity is assumed
to be weak, we can try to neglect the last term on the left-
hand side of Eq.~19!. However, if we then calculate the
solution to the obtained ideal equation and substitute it into
the neglected term, we find that this term has unbounded
growth with time and eventually becomes large. This occurs
because the solution to the ideal equation describes oscilla-
tions of each magnetic field line with its own frequency
VA(x)nl. Since the oscillation frequencies of different mag-
netic field lines are different, oscillations of neighboring
magnetic field lines get more and more out of phase. This
process, called phase mixing, leads to creation of large gra-
dients in thex direction. Hence, to obtain the uniformly valid
solution for large periods of time, we have to take the dissi-
pative term in Eq.~19! into account.

To obtain the uniformly valid solution we use the
Wentzel–Kramers–Brillouin~WKB! method. The crucial
step is to find the uniformly valid approximate Green’s func-
tion Gn(t,t,x) with respect to time. And to find Green’s
function we have, in turn, to calculate the uniformly valid
general solution to the homogeneous counterpart of Eq.~19!.
In accordance with the WKB method we introduce the
‘‘stretched’’ timeT5et, where the small parametere will be
determined later. Then we look for the solution in the form
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]Un /]x5Q(T,x)exp@ie21 U(T,x)#. Substituting this ansatz
into the homogeneous counterpart of Eq.~19!, we arrive at
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]T S ]U

]T D 2
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where the magnetic Reynolds number is given by R
5aVA1 /h with VA15VA(0). Now weimpose the condition
that the dissipative term on the left-hand side of this equa-
tion, which is the last term, be the same order as the terms
proportional toe. This condition results ine5R21/3. Collect-
ing the terms of the order unity in Eq.~20!, we obtain the
equation corresponding to the approximation of geometrical
optics ~e.g., Ref. 28!. The solutions to this equation are

U56VAnlT, U50. ~21!

Collecting the terms of the ordere in Eq. ~20!, we obtain the
equation corresponding to the approximation of physical op-
tics. Choosing either the first or the second expression Eq.
~21! for U, we write this equation in the form

]Q

]T
523Ln2T2Q or

]Q

]T
50, ~22!

where L5(1/6)al2VA1(dVA /dx)2. The solutions to these
equations are straightforward, and eventually we obtain the
general solution to the homogeneous counterpart of Eq.~19!
in the form

]Un

]x
5exp~2Ln2t3/R!@C1~x !cos~VAnlt !

1C2~x !sin~VAnlt !#1C3~x !, ~23!

where C1(x), C2(x), and C3(x) are arbitrary functions.
Green’s function Gn(t,t,x) with respect to time has to sat-
isfy the following conditions: it is a solution to the homoge-
neous counterpart of Eq.~19! for any fixedt,t;Gn(t,t,x)
50 for t,t;Gn(t,t,x) and ]Gn /]t are continuous att
5t;]2Gn /]t2→1 ast→t10. It is straightforward to check
that the function Gn(t2t,x) determined by

Gn~ t,x !5~VAnl !22H~ t !@12exp~2Ln2t3/R!cos~VAnlt !#

1O~R21/3! ~24!

satisfies all these conditions. Here H(t) is the Heaviside step
function, H(t)51 for t.0 and H(t)50 for t,0. Note that
Gn depends on the differencet2t instead oft and t sepa-
rately because the coefficients of Eq.~19! are independent of
time and, consequently, it is invariant with respect to the
time shift. The solution to Eq.~19!, satisfying the zero initial
conditions, is given by the convolution of Gn(t,x) and the
right-hand side of Eq.~19!. Neglecting the second term in
Eq. ~24!, which is small due to assumption R@1, and using
integration by parts, we write this solution in the form
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Integrating Eq.~25! with respect tox from 0 to a we calcu-
lateUn(a)2Un(0). On theother hand, we can calculate this
quantity using Eq.~18!. Comparing the two expressions we
obtain the governing equation forAn(t):
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To solve this equation we use the Laplace transform. Using
the theorem about the Laplace transform of convolution and
a standard table of Laplace transforms~e.g., Ref. 29! we
obtain the following solution to Eq.~27!:

An~ t !5
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p2n E
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`1§ Wn~v !

Dn~v;R!
e2ivt dv, ~28!

Wn~v !5v f̂ ~v !S 1

~VA1nl !2
2v22

1

~VA2nl !2
2v2D ,

~29!

where f̂ (v) is the Laplace transform off (t), and § is an
arbitrary positive constant. The dispersion functionDn(v;R)
is given by

Dn~v;R!5Dn
~0!~v !1Dn

~1!~v;R!, ~30!

Dn
~0!~v !5

VA1~VA1
2 kn

2
2v2!1/2

~VA1nl !2
2v2 1

VA2~VA2
2 kn

2
2v2!1/2

~VA2nl !2
2v2 ,

~31!

Dn
~1!~v;R!5iE

0

a VA
2kn

2
2v2

2vdv
$F@~v2VAnl !/dv#

1F@~v1VAnl !/dv#% dx, ~32!

wheredv5(3Ln2/R)1/3. The incompleteF function is de-
termined by

F~y ,t !5E
0

t

expS iys2

1

3
s3D ds, ~33!

and the completeF function is given byF(y)5F(y ,`). This
function was first introduced by Boris,30 and then used by
Goossenset al.6 to describe the wave motions in stationary
dissipative layers.
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The expression~28! determines the time evolution of the
magnetic pressure in the inhomogeneous layer. It will be
used in what follows to study dissipative eigenmodes and
transition to the steady state of driven oscillations.

IV. GLOBAL MODES

Global modes of thin inhomogeneous layers, which are
dissipative eigenmodes with the imaginary part of the eigen-
frequency much smaller than the real part, have been studied
analytically and numerically by many authors. In all previous
studies it was assumed from the very beginning that pertur-
bations of all variables were proportional to exp(2ivt). This
resulted in an eigenvalue problem withv2 as an eigenvalue.
This approach was used by, e.g., Einaudi and Mok,31,32 Mok
and Einaudi,33 and Rudermanet al.34,35 In this article we use
another approach and calculate the eigenfrequency of the
global mode using the nonstationary solution~28!.

The dispersion equation determining frequencies of dis-
sipative eigenmodes isDn(v;R)50. It is straightforward to
see thatDn

(1)(v;R);(a/L)Dn
(0)(v). Sincea/L!1, this ob-

servation enables us to use the regular perturbation method
and look for the solution to the dispersion equation in the
form v5vn

(0)
1vn

(1) with vn
(1)/vn

(0);a/L. In the first-order
approximation we obtainDn

(0)(vn
(0))50. This equation coin-

cides with the dispersion equation for surface waves on a
true magnetic interface in a cold ideal plasma. The solution
to this equation is36,37

~vn
~0!!2

5
1
2 $~VA1

2
1VA2

2 !kn
2
2@~VA1

2
2VA2

2 !2kn
4

14~VA1VA2k2!2#1/2%. ~34!

In what follows we takevn
(0)

.0. In the second-order ap-
proximation we obtain

vn
~1!

52Dn
~1!~vn

~0! ;R!S dDn
~0!

dv
D 21

, ~35!

where the derivative on the right-hand side of this expression
is calculated atv5vn

(0) . Let us calculate the asymptotic
expression forDn

(1)(vn
(0) ;R) for R@1. For brevity we write

v instead ofvn
(0) when doing this calculation. Using integra-

tion by parts, we obtain

F@~v6VAnl !/dv#5

idv

v6VAnl
1O~R24/3!. ~36!

While this formula with the plus sign is valid for all values
of x ~recall thatv.0 and dv is of the order R21/3), this
formula with the minus sign is valid only when the denomi-
nator of the first term on the right-hand side is not small, i.e.,
when uv2VAnlu@dv . This condition is violated in the vi-
cinity of the Alfvén resonant positionxA determined by the
condition VA(xA)nl5v. In the vicinity of this position we
can use the approximate expression

v2VAnl'
D~x2xA!

2v
, D52~nl !2

dVA
2

dx
U

x5xA

. ~37!

The condition uv2VAnlu;dv determines the dissipative
layer embracing the ideal resonant positionxA ~for more de-

tailed discussion see, e.g., Ref. 6!. Using this condition and
Eq. ~37!, we obtain the thickness of the dissipative layer
dA5uvh/Du1/3

52vdv(xA)/uDu. Now we introduce the
quantity sA such thatdA!sA!a. Then we use Eq.~36! for
ux2xAu.sA , and Eq.~37! for ux2xAu,sA , to rewrite Eq.
~32! in the form

Dn
~1!~v;R !52

1

2v
E

0

a VA
2kn

2
2v2

v1VAnl
dx

2

1

2v S E
0

xA2sA
1E

xA1sA

a D
3

VA
2kn

2
2v2

v2VAnl
dx1

iv2k2

dAuDu~nl !2

3E
xA2sA

xA1sA
F@~x2xA! sign~D !/dA# dx. ~38!

It is convenient to make the variable substitutionx85(x
2xA) sign (D)/dA in the last integral. Now we considerR
→`. This enables us to takesA→10 anddA→10. Then
the second integral tends to the principal Cauchy part of the
integral over@0,a#. The third integral tends to*

2`
` F(x) dx

5p. As a result we arrive at

Dn
~1!~v;R!5PE

0

a VA
2kn

2
2v2

VA
2 n2l2

2v2 dx1

piv2k2

uDu~nl !2 , ~39!

whereP indicates the principal Cauchy part of an integral.
This result enables us to calculate the explicit expression for
vn

(1) in terms of equilibrium quantities. The real part of this
quantity provides only small correction to the real part of the
eigenfrequency, and it is not important for what follows. In
contrast, the imaginary part is of great importance because it
describes wave damping. Using Eqs.~31!, ~35!, and~39!, we
obtain for the wave decrementgn52I(vn

(1)) ~I indicates
the imaginary part of a quantity! the following expression

gn5

pvk2

uDu~nl !2 S (
j51

2 VA j@VA j
2 ~k2

1kn
2!2v2#

~VA j
2 n2l2

2v2!2~VA j
2 kn

2
2v2!1/2D 21

.

~40!

In this expressionv5vn
(0) . The important property is that

gn5O(a/L), and it is independent of R.

V. TRANSITION TO THE STEADY STATE OF GLOBAL
DRIVEN OSCILLATION

We use the term ‘‘global motion’’ or ‘‘global oscilla-
tion’’ for a coherent motion of the cavity ‘‘as a whole’’ in
the x direction. A global mode is a particular case of global
oscillation. In what follows we assume that the harmonic
driving starts at the initial moment of time. To satisfy the
condition thatf 5] f /]t50 at t50 we take

f 5 f 0~12e2Vt!sin~Vt !. ~41!

The amplitudef 0 is constant for 0,x,a, and we do not
specify its dependence onx outside of this interval because it
is not important for what follows. We assume thatV is in the
Alfvén continuum of the fundamental harmonic with respect
to z, VA1l,V,VA2l. We also assume thatV,VA1k1 , so
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that the motion in regions I and II is evanescent in thex
direction. The analysis is the same for each harmonic with
respect toz. For brevity we drop the subscriptn, indicating
the number of a harmonic. In particular, we writek and A
instead ofkn andAn .

Our aim is to investigate the asymptotic behavior of the
perturbation of the magnetic pressure in the inhomogeneous
layer, A(t), for Vt@1. The temporal evolution ofA(t) is
determined by Eq.~28!. The functionD (0)(v), given by Eq.
~31!, has four branch points, which arev56VA1k and v
56VA2k. These branch points are shown by the boldface
points in Fig. 2. To obtain the single-valued branch of this
function, we make cuts from these branch points to2i`.
These cuts are shown in Fig. 2 by dashed lines. In the com-
plex plane with these cutsD (0)(v) is a single-valued func-
tion, and so is the functionW/D in Eq. ~28!.

The Laplace transform of the functionf (t) is

f̂ 5 f 0VS 1

V2
2v22

1

V2
2~v1iV !2D . ~42!

Then we conclude thatW/D has simple poles atv56V
and v5V(612i). In accordance with the results of the
previous section, there is also a pole at the frequency of the
global modevg'v (0)

1v (1). It is straightforward to show
that D(2v* )5D* (v), where the asterisk indicates the
complex conjugate value. This relation implies that, if
D(vg)50, thenD(2vg* )50, and there is an additional pole
of W/D at 2vg* . It seems from the first sight that, since
W(v) has poles atv56VA1nl andv56VA2nl, there are
poles of W/D at v56VA1nl and v56VA2nl. However,
more careful examination shows that the functionD(v) also
has poles at this values ofv. The ratio of the two functions,
W and D, each having simple poles atv56VA1nl and v
56VA2nl, is regular atv56VA1nl andv56VA2nl. The
six simple poles of the integrand are shown by the boldface
points in Fig. 2.

To calculatedA(t) we deform the integration contour as
shown in Fig. 2. It is assumed that the horizontal parts of the
contour have been moved to2i`, so they do not contribute
to the integral. The contributions from the parts of contour
going along the cuts describe the transition to the steady state
of oscillation in regions I and II. It can be shown with the use
of integration by parts that, forVt@1, these contributions
are of the order (Vt)21, so they can be neglected in our
asymptotic analysis. The contributions from the polesV
(612i) are proportional toe2Vt and also can be neglected.

It is possible that, in addition tovg and 2vg* , there are
other zeros of the dispersion functionD(v;R). However,
they have imaginary parts of the same order as real parts, so
that, similar to the poles atV(612i), their contributions
can be neglected. Hence, the significant contributions come
only from the four poles,6V, vg , and2vg* , and asymp-
totically the integral in Eq.~28! is equal to the sum of resi-
dues with respect to these poles multiplied by22pi. These
residues are equal toÃVe2iVt, ÃV* e iVt, Ãge2ivgt, and

Ãg* e ivg* t, respectively, where

ÃV5

2 f 0Vn2l2~VA2
2

2VA1
2 !

2D~V;R!~VA1
2 n2l2

2V2!~VA2
2 n2l2

2V2!
, ~43!

Ãg5

f 0Vn2l2vg~VA2
2

2VA1
2 !

~VA1
2 n2l2

2vg
2!~VA2

2 n2l2
2vg

2!

3S 1

V2
2vg

22

1

V2
2~vg1iV !2D S dD

dv
D 21

. ~44!

The quantitydD/dv in Eq. ~44! is calculated atv5vg . The
asymptotic behavior ofA(t) is described by

A~ t !5R~AVe2iVt!1e2gt
R~Age2ivrt!, ~45!

AV,g54~pn !21rVA
2 ÃV,g , ~46!

wherevr5R(vg)'v (0), andR indicates the real part of a
quantity. We see that, forVt@1, the global oscillation of the
cavity is described by the same equation as the oscillation of
a weakly damped oscillator with the frequencyvr and the
decrementg, which was first suggested by Hollweg.26 In
particular, the characteristic time of transition to the steady
state of oscillation is of the orderg21. The important prop-
erty is that this time is independent of R for R@1.

When uV2vru@g, the dimensionless amplitude of the
magnetic pressure oscillation in the steady state,AV /rVA

2 , is
of the order of the dimensionless amplitude of the velocity
oscillation at the boundary,f 0l/V. When uV2vru&g, the
driver is in quasi-resonance with the cavity. We can use the
approximate formula

D~V;R!'~V2vg!
dD

dv
U

v5vg

, ~47!

and AV'2Ag . With the aid of Eq.~47!, we obtain from
Eqs.~43! and ~46! that

AV /rVA
2; f 0l/uV2vgu;~ f 0l/V !~L/a !@ f 0l/V.

VI. LOCAL MOTIONS

Let us study the behavior of thex andy components of
the velocity,u andv. First we study the nonresonant driving
where uV2vru@g. It is interesting that this definition of
nonresonant driving coincides with that put forward on
qualitative grounds by Allanet al.38 To obtain the expression
for vn , we note that Eq.~9!, determiningv, and Eq.~10!,
determining ]u/]x, differ only in their right-hand sides.
Then it immediately follows that the left-hand side of the
equation forvn coincides with the left-hand side of Eq.~19!
for ]Un /]x, while its right-hand side is2(ik/r)d2An /dt2.

FIG. 2. The integration contour in the complexv-plane. The boldface points
show the simple poles and the branch points. The dashed lines show the
cuts.
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Therefore, it is clear that the expression forvn is obtained
from Eq. ~25! for ]Un /]x by substituting (ik/r)An for
(1/rVA

2 )Y n . As a result, after the substitutiont→t2t in the
integral, we arrive at

vn52

ik

r
E

0

t

An~ t2t ! exp~2Ln2t3/R!cos~VAnlt ! dt.

~48!

Once again, we drop the subscript ‘‘n’’ for brevity.
To study the asymptotic behavior ofv for Vt@1, we

substitute Eq.~28! into Eq.~48!, change the order of integra-
tion, and make the substitution of the integration variablet
5s/dv @recall thatdv5(3Ln2/R!1/3#. As a result we obtain

v5

kVA
2

p2ndv
E

2`1§

`1§ Wn~v !

Dn~v;R!
e2ivt dv

3E
0

tdv

expS ivs/dv2

1

3
s3D cos~VAnls/dv! ds.

~49!

Then we use the same procedure as when obtaining Eq.~45!.
However, now we cannot neglect the contributions from the
poles atv5V(612i), because they do not decay exponen-
tially on the time scaleV21. Using integration by parts to
simplify the contribution from these poles, and neglecting
small terms of the order ofdv /V, we eventually arrive at the
asymptotic expression valid fortV@1

v52

ik

r
RH dv

21AVe2iVtE
0

tdv

expS iVs /dv2

1

3
s3D

3cos~VAnls/dv! ds1dv
21Age2t2ivrt

3E
0

tdv

expF ~g1ivr!s/dv2

1

3
s3G cos~VAnls/dv! ds

1A ine2~ tdv!3
cos~VAnlt !J . ~50!

The third term in the curly brackets appears due to the con-
tributions from the poles atv5V(612i). We do not give
the expression forA in because it is not used in what follows,
and only note thatA in is of the same order of magnitude as
AV andAg .

As it has been pointed out in Sec. IV, the dispersion
function Dn(v;R) might have additional zeros besidesvg

and2vg* . All these additional zeros have the property that
their imaginary parts are negative and of the order of real
parts. Contributions from these hypothetical additional zeros
would give additional terms in Eq.~50! similar to the third
term in the curly brackets. However, neither this third term
nor the hypothetical additional terms are of particular impor-
tance. They simply describe oscillations with the local Al-
fvén frequency decaying on the time scaleV21R1/3. Hence
the possible presence of these additional terms does not af-
fect the following analysis.

To obtain the steady state of oscillations we taket
→`. Then the second and third terms in the curly brackets
exponentially decrease, and we arrive at

v52

ik

rdv
RH AVe2iVtE

0

`

expS iVs/dv2

1

3
s3D

3cos~VAnls/dv! dsJ . ~51!

Using integration by parts, it is straightforward to show that
v; f 0 for any overtone (n.1). For the fundamental har-
monic (n51) this estimate is valid everywhere except the
narrow dissipative layer with the thicknessdA ~see Sec. IV!,
embracing the ideal resonant positionxA determined by
lVA(xA)5V. In this dissipative layer we use the approxima-
tion given by Eq. ~37!, and arrive at the well-known
asymptotic formula for the fundamental harmonic~e.g.,
Ref. 6!

v52

ik

2rdv
R$AVe2iVtF„s sign~D !…% , ~52!

with s5(x2xA)/dA anddA5uhV/Du1/3. SinceF(y);1 for
uy u;1, we conclude that the amplitude ofv in the dissipative
layer is of the orderf 0V/dv . Assuming thatVA1;VA2 and
dVA /dx;VA1 /a, we obtain the estimatedv;V(alR!21/3.
Hence, once again, we arrive at the well-known result that
the amplitude ofv in the dissipative layer is scaled as R1/3.

Let us now estimate the transitional time to the steady
state of oscillationst tr . Using integration by parts, we obtain
from Eq. ~50!

v52

ik

r
RH iAVV

WV
e2iVt

1

Ag~g1ivr!

Wg
e2gt2ivrt

2F S iAVV

WV
1

Ag~g1ivr!

Wg
2A inD cos~VAlt !

1S AV

WV
1

Ag

Wg
D sin~VAlt !Ge2~ tdv!3/3J 1O~dv /V !, ~53!

where

WV5V2
2VA

2 n2l2, Wg5~vr2ig !2
2VA

2 n2l2. ~54!

The characteristic damping times of the second and third
terms in the curly brackets areg21 anddv

21;V21R1/3, re-
spectively. Thent tr is the largest of the two times,

t tr5max~g21,V21R1/3!. ~55!

The asymptotic expression~53! is not valid whenx is
close to eitherxg , determined bynlVA(xg)5vr , or to xA

for the fundamental harmonic. Whenx is close toxA for the
fundamental harmonic, the contribution to Eq.~53! from the
second integral in Eq.~50! ~terms proportional toAg) re-
mains the same. To evaluate the first integral we use the
approximate formula~37! with v5V. As a result, we obtain
the following asymptotic expression for the first term in the
curly brackets in Eq.~50!:

1
2 dv

21AVe2iVtF„s sign~D !,tdv…. ~56!

First of all, we note thatF(s,tdv)'tdv1
1
2 is(tdv)2 for

usutdv!1 ~for simplicity we takeD.0). Hence, the ampli-
tude of oscillations at the resonant position (s50) grows
secularly with time at the initial stage when dissipation is
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negligible. The characteristic spatial scale created by phase
mixing at the timet is determined by the condition that the
second term in this expression is of the order of the first
term. This condition gives usu;(tdv)21, or ux2xAu
;utldVA /dxu21. In the magnetospheric context these results
were first obtained by Wright,39,40 and then confirmed by
Mann et al.41

The functionF(y ,t) converges toF(y) very rapidly as
t→`. For example,F(0,2) differs fromF(0) by less that
2%. If we take t;V21R1/3, then tdv;(al)21/3, and
F„s sign (D),tdv…'F„s sign (D)… for a/L&0.1. Hence, we
conclude that the characteristic transitional time for the first
term in the curly brackets in Eq.~50! is V21R1/3, and Eq.
~55! is also valid forx close toxA . Using the estimate for the
characteristic spatial scale created by phase mixing at the
time t,utldVA /dxu21, and the estimateudVA /dxu;VA /a,
we obtain that this transitional time is just the time necessary
for phase mixing to create the spatial scale of the order of
aR21/3.

When x is close toxg , the contribution into Eq.~53!
from the first integral in Eq.~50! ~terms proportional toAV)
remains the same. To evaluate the second integral we once
again use Eq.~37!, but now withv5vr , and withxg sub-
stituted for xA . As a result, we obtain the following
asymptotic expression for the second term in the curly brack-
ets in Eq.~50!:

1
2 dv

21Age2gt2ivrtF„s sign~D !2ig/dv ,tdv…. ~57!

Note that heres5(x2xg)/dA , anddA anddv are calculated
at x5xg . Let us first consider the case whereg&VR21/3.
Then g/dv&1 and, similar to Eq.~56!, we can substitute
F„s sign (D)2ig/dv… for F„s sign (D)2ig/dv ,tdv… when
tV*R1/3. We see that the contribution from the second in-
tegral in Eq.~50! is of the orderV/dv . Since, in accordance
with Eq. ~53!, the contribution from the first integral is of the
order unity, it can be neglected. As a result, we obtain that,
for tV*R1/3, the asymptotic behavior ofv in the dissipative
layer embracingxg is given by

v52

ik

2rdv
R$Age2gt2ivrtF„s sign~D !2ig/dv…%.

~58!

The behavior of the functionF(y2ia) with a.0 was stud-
ied by Rudermanet al.34 and Tirry and Goossens.22 In par-
ticular, it was shown that, fora&1, this behavior is almost
the same as fora50. Hence, we conclude that, after the
transitional time of the orderV21R1/3, the quasi-stationary
dissipative layer embracingxg is formed. The structure of
this dissipative layer is practically the same as of that em-
bracing xA . The amplitude of oscillations is of the same
order of magnitude as in the dissipative layer embracingxA .
Then, when the time progresses, the oscillations in the dissi-
pative layer slowly decay on the time scaleg21. This decay
is adiabatic in the sense that the structure of the dissipative
layer remains the same. Note that the appearance of large-
amplitude oscillations in the vicinity ofxg , even whenV
Þvr , was found in numerical simulations~e.g., Refs. 24
and 25!.

Let us now study the case whereg@VR21/3;dv . The
important questions in studying the temporary evolution of
the expression~57! are when it attains its maximum ampli-
tude, and what this amplitude is. It is shown in Appendix B
that, ats50, the maximum amplitude is attained att5tm

'3g21 ln(g/dv). Using Eq.~B4!, we conclude that the maxi-
mum amplitude of oscillations with the frequencyvr at s
50 is of the orderf 0V/g. Hence, while it is still much
larger than the driving amplitudef 0 , it is much smaller than
the amplitude of oscillations with the frequencyV at x5xA

in the steady state.
Let us taket satisfying

1,tdv,~g/dv!1/2;~al !2/3R1/6. ~59!

Then we can use Eq.~B6!. Using this equation, we obtain for
the amplitude of oscillations with the frequencyvr at s50
the estimatef 0(al)21e2(tdv)3/3. For t5t15dv

21u3 ln(al)u1/3

this quantity equalsf 0 . For al50.1 we obtaint1dv'2, so
the condition~59! is satisfied forg/dv>4. Since fort.tm

the amplitude of oscillations monotonically decreases, it is
even smaller thanf 0 for t.t1 . And it is also smaller ats
Þ0 than ats50. Hence, we conclude that the characteristic
damping time of oscillations with the frequencyvr nearxg is
t1 . Sincet1;dv

21;VR1/3, the expression~55! is once again
valid.

The absolute value of the integrand in the expression for
F„s sign (D)2ig/dv ,tdv… takes its maximum value ats
5(g/dv)1/2. Consequently,F„s sign (D)2ig/dv ,tdv… at-
tains its limiting value of F(s sign (D)2ig/dv… at t
;(g/dv

3 )1/2;alV21R1/2. This result is in complete agree-
ment with the behavior of the functionF((x2xg)/dv

2ig/dv… for g/dv@1. It has the form of a wave packet with
the center atxg , the characteristic widthag/V, and the pe-
riod of the carrier wave of the order ofaR21/2.34,35Scales of
the order ofaR21/2 are created by the phase mixing after the
time of the order ofV21R1/2. However, this structure cannot
be observed in the vicinity ofxg . The reason is that
F(2ig/dv);exp„2/3(g/dv)3/2….35 As a result, the ampli-
tude of oscillations with frequencyvr in the vicinity of xg is
proportional to exp„2 1

3 (g/dv)3/2…;exp(21
3 R1/2g/V) for t

;V21R1/2. Since we consider the case whereg/V@R21/3,
this amplitude is exponentially small, so that oscillations
with frequencyvr are completely dominated by those with
frequencyV.

Note that the formation of the energy-containing layer,
embracingxg , with the characteristic width equal toag/V,
and with the amplitude of oscillations inside it of the order of
f 0V/g, was predicted by Lee and Roberts23 and Mann
et al.41 However, since these authors used the ideal MHD
equations to describe plasma motions, they did not study
damping of oscillations in the energy-containing layer, and
did not find the minimum spatial scale at which dissipation
stops phase mixing.

We start studying the behavior ofU in the inhomoge-
neous layer from considering the motion of the layer bound-
aries, described byU(t,x j) ~recall thatx150 and x25a).
These quantities are determined by Eq.~18! with Pn(x j)
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5An(t). To obtain the expression describing the asymptotic
behavior ofU(t,x j), we make the Laplace transform of Eq.
~18!, which yields, with the aid of Eq.~28!,

Û j5
2v2 f̂

pn~VA j
2 n2l2

2v2!

1

2~21! jvVA jW~v !~VA j
2 kn

2
2v2!1/2

pnD~v;R!~VA j
2 n2l2

2v2!
, ~60!

where Û j is the Laplace transform ofU(t,x j), and W(v)
and D(v;R) are given by Eqs.~29!–~32!. It is straightfor-
ward to show that the right-hand side of Eq.~60! is regular at
v2

5VA j
2 n2l2. Now the asymptotic behavior ofU(t,x j) for

tV@1 is calculated in the same way as that ofA(t). As a
result we arrive at the expression, similar to Eq.~45!,

U~ t,x j!5R~UVe2iVt!1e2gt
R~Uge2ivrt!, ~61!

where

UV5

iVAV$VA1~VA1
2 k2

2V2!1/2
1VA2~VA2

2 k2
2V2!1/2%

rVA
2 n2l2~VA1

2
2VA2

2 !
,

~62!

Ug5

ivrAg~VA1
2 k2

2vr
2!1/2

r1VA1~VA1
2 n2l2

2vr
2!

. ~63!

When deriving this expression we have neglected small
terms of the order ofa/L. We drop the subscriptj at UV and
Ug because these quantities take the same values forj51
and j52. We see that the transitional time to the steady state
of oscillations of the inhomogeneous layer boundaries is the
same as forA(t), namelyg21.

The quantity]U/]x is given by Eq.~25!. To study the
asymptotic behavior ofU(t,x) for tV@1 we use the same
procedure as in studying the asymptotic behavior ofv. We
substitute Eq.~45! into Eq. ~25!, integrate the result with
respect tox, and use the boundary conditions atx5x j . As a
result we obtain

U~ t,x !5U~ t,x j!1E
x j

x dx

rVA
2dv

RH AV~V2
2VA

2k2!e2iVt

3E
0

tdv

expS iVs/dv2

1

3
s3D cos~VAls/dv! ds

1Ag~vg
2
2VA

2k2!e2gt2ivrt

3E
0

tdv

expF ~g1ivr!s/dv2

1

3
s3G

3cos~VAls/dv! dsJ . ~64!

It can be verified that this formula gives the same result for
j51 andj52. The investigation of this expression is similar
to that of Eq.~50!. It can be shown that the transitional time
to the steady state of oscillations ist tr . For the fundamental
harmonic there is the dissipative layer embracingxA . The
steady state of oscillations in this layer is described by

U~ t,x !5U~ t,xA!1

k2v

rD
R$iAVe2iVtG„s sign~D !…%,

~65!

where the equilibrium quantities are calculated atx5xA .
The incomplete G-function is determined by

G~y ,t !5E
0

t exp~ iys !21

s
e2s3/3 ds, ~66!

and the complete G-function, first introduced by Boris,30 is
given byG(y)5G(y ,`). Once again, Eq.~65! gives a well-
known result~e.g., Ref. 6!. The amplitude ofU(t,x) in the
dissipative layer is of the order of (a f 0 /L)ln R when ln R
.L/a, and of the order off 0 when ln R&L/a.

Wheng!VR21/3, the quasi-stationary dissipative layer,
similar to that embracingxA , forms nearxg . On the other
hand, wheng@VR21/3, oscillations with the frequencyvr

decay faster than this layer forms.
Let us now concentrate on the case whereg@VR21/3,

and estimate the order of magnitude of different terms in Eq.
~64! for x not very close toxA , i.e., out of the dissipative
layer. The analysis, similar to that used to calculate the maxi-
mum amplitude ofv at xg , leads to the conclusion that the
maximum amplitude of the second term in the curly brackets
at xg is of the same order as atxÞxg . Let us first consider
the fundamental harmonic. It is straightforward to show that
the second term in Eq.~64! is of the orderal f 0! f 0 for x
,xA when j51, and forx.xA when j52. Since the term
U(t,x j) is of the orderf 0 , we conclude that it is the domi-
nant term in Eq.~64! for x,xA when j51, and forx.xA

when j52. The situation is even simpler for the overtones.
The termU(t,x j) is dominant in the whole interval 0,x
,a both for j51 andj52. As we have seen, the transitional
time to the steady state of oscillations with the frequencyV
is of the orderg21 for U(t,x j). Consequently, we obtain a
very important result. The transitional time to the steady
state of oscillations for the dominant motion in thex direc-
tion far away from the dissipative layer isg21. When g
@VR21/3, this transitional time is much smaller thant tr .
After a time of the order ofg21, the inhomogeneous layer
oscillates ‘‘as a whole’’ inx direction with the frequencyV,
with the exception of the narrow dissipative layer embracing
xA . In this layer the transitional time ist tr@g21.

In the case of the resonant driving, whereuV2vru&g,
the analysis of this section remains the same for the over-
tones. For the fundamental harmonic the only difference is
that amplitudes of all motions are larger by the factor of the
order ofL/a than those in the case of the nonresonant driv-
ing, and in all regimes there is only one dissipative layer
embracing the positionxA'xg . It is also instructive to recall
that, in the case of resonant driving,Ag'2AV for the fun-
damental harmonic.

VII. ENERGY DISSIPATION

Let us calculate the energy dissipation rate per the unit
length in they direction, averaged with respect toy. When
we took all variables proportional toe iky, we implicitly as-
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sumed that we consider the real parts of quantities. Then for
the mean value of the product of the two quantities,g andh,
we have

k

2p
E

0

2p/k

$R~ge iky!%$R~he iky!%dy5

1

2
R~gh* !. ~67!

Using this result and Ampe`re’s law we immediately obtain
the energy dissipation rate averaged with respect toy:

dE

dt
5

1

2s0
E

0

a

dxE
0

L

uju2 dz5

h

2m
E

0

a

dxE
0

L

u“3bu2 dz,

~68!

wheres051/mh is the resistivity andj is the density of the
electrical current. Dissipation becomes substantial only when
large gradients in thex direction are built up in the vicinities
of xA andxg . Note thatxg should be labeled by the subscript
‘‘ n’’ because it is different for different harmonics with re-
spect toz. We drop this subscript ‘‘n’’ for brevity. When
large gradients are present, they component of the magnetic
field dominates other components in the vicinities ofxA and
xg . This observation enables us to use the approximation
u“3bu'u]by /]xu.

To calculateby we use Eq.~4!. The ratio of the second
term on the right-hand side of this equation to the term on
the left-hand side is of the order R21/3

!1 even in the sta-
tionary dissipative layer embracingxA in the steady oscilla-
tion state. These two terms are of the same order only in
regions where the oscillation amplitude varies on the spatial
scale of the order ofaR21/2. Such small spatial scales appear
in the vicinity of xg in the case whereg@VR21/3. However,
as it was explained in the previous section, these small scales
are built up at times when the amplitude of oscillation with
the frequencyvr is exponentially small, so it does not con-
tribute significantly to energy dissipation. This analysis en-
ables us to neglect the second term on the right-hand side of
Eq. ~4! when calculatingby . Then, using Eq.~12! and car-
rying out the integration with respect toz, we arrive at

dE

dt
5

p2rVA
2h

4L (
n51

`

n2E
0

aU ]

]x E0

t

vn~t ! dtU2

dx. ~69!

We are only interested in the asymptotic behavior of this
quantity for tV@1. To obtain the asymptotic expression for
*0

t
vn dt, we use the same procedure as we used in Sec. VI to

obtain Eq. ~50!. Then we retain only the resonant terms,
because only these terms contribute into the energy dissipa-
tion. As a result we arrive at an expression coinciding with
that obtained by the simple substitution forvn of Eq. ~50!
with the third term in the curly brackets neglected.

Since we have assumed that the driver is in resonance
only with the fundamental harmonic, the first term in the
curly brackets in Eq.~50! is of the orderdv at any spatial
position @see Eq.~53!# whenn.1, and its contribution into
dE/dt is negligible. Hence, forn.1,

E
0

aU ]

]x E0

t

vn~t ! dtU2

dx

'
1

4 E0

a H ]

]x

k

rdv
RFAgE

0

t

e2gt2ivrt dt

3E
0

tdv

expS gs/dv2

1

3
s3D

3~exp@ i~vr2VAnl !s/dv#

1exp@ i~vr1VAnl !s/dv# ! dsG J 2

dx. ~70!

The expression in the square brackets is large only in the
vicinity of the resonant positionxg , and it is large because of
the resonance in the first exponent in the parentheses. The
second exponent is nonresonant and can be neglected. Using
integration by parts, we get rid of the integration with respect
to s. Since the dominant contribution comes from the vicinity
of xg , we use the approximation~37!. Making the substitu-
tion of the integration variablex5xg1dAs with dA

52vdv /uDu, and neglecting derivatives of the equilibrium
quantities in comparison with derivatives of quantities de-
pending ons, we obtain

E
0

aU ]

]x E0

t

vn~t ! dtU2

dx

'
k2

4r2D2dA
3 E

2`

` H AgF e2gt2ivrt

3E
0

tdv

t expS ist sign~D !1gt/dv2

1

3
t3D dt

2E
0

tdv

t expS ist sign~D !2itvr /dv2

1

3
t3D dtG

1c.c.J 2

ds, ~71!

where ‘‘c.c.’’ denotes the complex conjugate quantity. It is
straightforward to show, using integration by parts, that the
ratio of the second integral in the square brackets to the first
one is of the order ofdv /vr!1. Hence the second integral
can be neglected. Now we square the expression in the curly
brackets, and write the product of two integrals as a double
integral with respect tot andt8. Then we change the order of
integration and use the identity

E
2`

`

exp@ is~t2t8!# ds52pd~t2t8!, ~72!

whered indicates the Dirac delta function. As a result we
arrive at
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E
0

aU ]

]x E0

t

vn~t ! dtU2

dx

'
pk2uAgu2

r2D2dA
3 e22gtE

0

tdv

t2 expS 2gt/dv2

2

3
t3D dt.

~73!

All equilibrium quantities in this expression are calculated at
x5xg . Note that, although we did not average with respect
to time, the right-hand side of this expression does not oscil-
late with the frequencyvr . This property was noticed in
numerical simulations,10 and demonstrated by Wright and
Allan42 subsequently. Here we have proven the result ana-
lytically. The dependence onn is hidden in expressions for
the equilibrium quantities,g andAg .

Whenn51 the calculation is more complicated, because
we have to take both terms in the curly brackets in Eq.~50!
into account. As we have already explained, the dominant
contribution into energy dissipation comes from the narrow
dissipative layers embracing the two resonant positions,xA

andxg . For 1!tV!R1/3 the thickness of these layers can be
substantially larger thandA , but it is always much smaller
than a. If uxA2xgu;a, the two dissipative layers do not
overlap, and the integral over@0,a# of the product of the two
terms in Eq.~50! is very small and can be neglected. We
consider a more general case whereuxA2xgu can be much
smaller thana. Then, using Eq.~50!, we obtain forn51 the
expression similar to Eq.~70!, however containing three
terms on the right-hand side. The first term is obtained from
the right-hand side of Eq.~70! by taking n51. The second
term is obtained from the right-hand side of Eq.~70! by
takingn51, g50, and substitutingV andAV for vr andAg

respectively. The third term comes from the product of the
two terms on the right-hand side of Eq.~50!, and it takes the
form

2E
0

a H ]

]x

k

rdv
RFAgE

0

t

e2gt2ivrt dt

3E
0

tdv

expS ~g1ivr!s/dv2

1

3
s3D cos~VAls/dv! dsG J

3H ]

]x

k

rdv
RFAVE

0

t

e2iVt dt

3E
0

tdv

expS iVs2

1

3
s3D cos~VAls/dv! dsG J dx. ~74!

The evaluation of the first term exactly coincides with that
for n.1, and results in the expression on the right-hand side
of Eq. ~73!. The evaluation of the second term is similar to
that of the first term, and results in the expression obtained
by substitutingAV for Ag and takingg50 in the expression
on the right-hand side of Eq.~73!. Let us now evaluate the
expression~74!. We assume thatuxA2xgu!a, because oth-
erwise this expression is small and can be neglected. Then
we write xg as xg5xA1zdA , wherez is a free parameter,
and calculate all equilibrium quantities atx5xA . The proce-
dure of evaluation of the expression~74! is similar to that

which resulted in Eq.~73!. First, using integration by parts,
we get rid of integration with respect tos. Then we write the
cosines as sums of two exponents and neglect the nonreso-
nant ones. Then we neglect the derivatives of equilibrium
quantities in comparison with derivatives of terms varying
on the spatial scaledA . Now we make the substitutionx
5xA1dAs, and integrate only over a narrow dissipative
layer with the thickness of the order ofdA embracing bothxA

and xg . This enables us to use the approximation~37! and
write V2VAl5dvssign(D), vr2VAl5dv(s2z)sign(D).
Then, neglecting small terms similar to the second term in
the square brackets in Eq.~71!, we rewrite the expression
~74! as

k2

2r2D2dA
3 E

2`

` H AVe2ivtE
0

tdv

t

3expS ist sign~D !2

1

3
t3D dt1c.c.J

3H Age2gt2ivrtE
0

tdv

t expS i~s2z !t sign~D !

1gt/dv2

1

3
t3D dt1c.c.J ds. ~75!

Once again we write the product of the two integrals with
respect tot as a double integral with respect tot and t8,
change the order of integration, and use Eq.~72!. Then, re-
calling expressions for the first and second terms, we even-
tually arrive at

E
0

aU ]

]x E0

t

v1~t ! dtU2

dx

'
pk2

2r2D2dA
3 H uAVu2~12e22~ tdv!3/3!

12uAgu2e22gtE
0

tdv

t2 expS 2gt/dv2

2

3
t3D dt

14RFAVAg* e2gt1i~V2vr!tE
0

tdv

t2

3expS 2izt sign~D !1gt/dv2

2

3
t3D dtG J . ~76!

We see that the last term in the curly brackets describes the
oscillations with the frequencyuV2vru, which is the beat
between oscillations with the frequenciesV and vr . This
beat phenomenon was first observed by Poedts and Kerner24

in the numerical simulation. These authors also suggested the
explanation of this phenomenon as the beat between the driv-
ing frequency and the frequency of the global mode. Our
analysis supports this explanation completely.

The case whereuxA2xgu;a or, which is the same,uV
2vru;V, corresponds toz→`. In this case the third term
in the curly brackets on the right-hand side of Eq.~76! tends
to zero and the beat disappears. When the driver is in reso-
nance with the global mode (V5vr), the beat also disap-
pears.
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In the steady state of oscillation both the right-hand side
of Eq. ~73! and the second and third terms in the curly brack-
ets in Eq.~76! tend to zero. As a result we obtain for the
energy dissipation rate

dE

dt
5

pk2LVuAVu2

8ruDu
, ~77!

where all equilibrium quantities are calculated atx5xA .
Note that the energy dissipation rate is independent ofh,
which once again is a well-known result.

Let us now estimate the characteristic time necessary
that dE/dt reaches its stationary value. First we consider the
nonresonant driving whereuV2vru@g. Wheng&VR21/3,
the upper limits of integration in Eqs.~73! and ~76! can be
substituted by infinity fort*g21. Then it becomes obvious
that the characteristic transitional time fordE/dt is g21.
Wheng@VR21/3, the analysis, similar to that used to study
Eq. ~57!, shows that the right-hand side of Eq.~73! and the
second and third term in the curly brackets on the right-hand
side of Eq. ~76! decay on the time scale of the order of
V21R1/3. Hence, we conclude that the characteristic transi-
tional time fordE/dt is t tr given by Eq.~55!.

Now we consider the resonant driving. For the sake of
simplicity we takeV5vr ; however, the analysis remains
valid also foruV2vru&g. The amplitude of the fundamen-
tal harmonic is now larger than the amplitudes of the over-
tones by a factor of the order ofL/a. This implies that the
terms withn.1 in the sum on the right-hand side of Eq.~69!
can be neglected in comparison with the first term. Then,
using Eq.~76!, the relationAg'2AV , and integration by
parts, we obtain

dE

dt
5

pk2LVuAVu2

8ruDu H ~12e2gt!2
2

2g

dv
E

0

tdv

~12e2g~ t2t/dv!!

3expS 2g~ t2t/dv!2

2

3
t3D dtJ . ~78!

Once again it is obvious that the characteristic time isg21

wheng&VR21/3. Let us study the case whereg@VR21/3.
For tdv!1 we can takee22p3/3'1 in the integral in Eq.
~78!. Then the integral is easily calculated, and we find that
the second term in the curly brackets in Eq.~78! is approxi-
mately equal to unity fort@g21. This consideration shows
that the transitional time cannot be much smaller thandv

21

;VR21/3. If we neglect the exponent in the parentheses in
the integrand, we only increase the second term. On the other
hand, after this neglect it becomes similar to the absolute
value of the expression~57! at s50. Then we can use the
analysis of this expression carried out in the previous sec-
tion, and conclude that the characteristic decay time for the
second term isV21R1/3. Hence, the characteristic time nec-
essary so thatdE/dt reaches its stationary value is alwayst tr ,
no matter if the driving is resonant or nonresonant. In par-
ticular, this time isV21R1/3 when g*VR21/3. Hence, we
have not found the effect obtained by Poedts and Kerner.24

On the basis of numerical modeling these authors claimed

that the characteristic time is proportional to R1/5 in the case
of resonant driving. However, the difference between our
result and that by Poedts and Kerner24 is not surprising at all,
because the setting of the problem in the present article dif-
fers very much from that in the paper by Poedts and
Kerner.24

VIII. SUMMARY AND CONCLUSIONS

In this article we have addressed the problem of nonsta-
tionary harmonically driven oscillations of a one-
dimensional magnetic cavity in a cold resistive plasma. We
have studied only foot point driving, polarized in the inho-
mogeneous direction. We have considered small-amplitude
oscillations and used the linear description. The analysis has
been based on the two main assumptions:~i! the magnetic
Reynolds number R is large and~ii ! the cavity width in the
direction perpendicular to the equilibrium magnetic field,
a, is much smaller than the cavity length in the direction of
the magnetic field,L. These two assumptions have greatly
simplified the analysis. In particular, the second assumption
has enabled us to neglect the variation of the magnetic pres-
sure in the direction perpendicular to the equilibrium mag-
netic field. As a result we have managed to obtain the solu-
tion describing the temporal evolution of the magnetic
pressure and the velocity explicitly. Using this solution we
have studied the transition to the steady state of driven os-
cillations, and calculated the energy dissipation rate in the
cavity.

On the basis of our analysis we have made the following
conclusions. One should distinguish between the global mo-
tion of the cavity and the local motion. The global motion
corresponds to the magnetic pressure oscillation, and the os-
cillation of the magnetic field lines in the inhomogeneous
directionx, with the exception of field lines in the vicinities
of the resonant positions. FortV@1 ~t is the time andV the
driving frequency! the global motion of the cavity is exactly
the same as that of a damped oscillator. After the transitional
time of the order ofg21;L/aV ~g is the decrement of the
fundamental global mode! it attains the steady state of har-
monic oscillation with frequencyV. When the driving is
nonresonant (uV2vru@g, wherevr is the real frequency of
the fundamental global mode!, the amplitude of the global
motion is of the order of the driving amplitude. When the
driving is quasi-resonant (uV2vru&g), the amplitude is
larger than the driving amplitude by factor of the order of
V/g;L/a.

The local motion is the motion in they direction, which
is the direction perpendicular to the equilibrium magnetic
field and to the direction of inhomogeneity, and also the
motion in thex direction in the vicinities of resonances. We
have assumed thatV is in the Alfvén continuum of the fun-
damental harmonic with respect toz, so there is a resonant
positionxA where the local Alfve´n frequency matchesV. In
addition, there is the countable set of resonant positionsxgn ,
where the local Alfve´n frequency matches either the fre-
quency of the fundamental global mode (n51), or the fre-
quency of the global modes corresponding to overtones (n
.1).
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The motion of a magnetic line in they direction is a
superposition of the oscillation with the frequencyV, and the
oscillation with the local Alfve´n frequency. Oscillations at
the local Alfvén frequencies decay on the phase-mixing time
scale V21R1/3, and after that all the magnetic field lines
oscillate with the frequencyV. Far away from the resonant
positions the oscillation amplitudes are of the order of the
driving amplitude. In a thin dissipative layer with the thick-
nessdA;aR21/3 the oscillation amplitude is larger than the
driving amplitude by a factor of the order of R1/3.

Since the fundamental global mode dominates the global
modes of the overtones, and it also has the largest damping
time (g5g1,gn for n.1), in what follows we discuss only
the motion in the vicinity ofxg5xg1 . The motion in the
vicinity of xg depends strongly on the ratio between the dec-
rement of the global modeg, and the inverse phase-mixing
time VR21/3. Wheng&VR21/3, the decay of the global mo-
tion with frequencyvr is slow enough to make possible the
formation of a quasi-stationary dissipative layer embracing
xg . For t;V21R1/3 the thickness of this layer, and the am-
plitude of the oscillation with frequencyvr inside it, are of
the same order of magnitude as those in the vicinity ofxA .
Then the motion in this layer decays slowly on the time scale
g21.

Wheng@VR21/3, the amplitude of the oscillation with
the frequencyvr in the vicinity of xg attains its maximum
value~which is larger than the driving amplitude by a factor
of the order of V/g;L/a!R1/3) at time tm

;g21 ln(gR1/3 /V). Then it slowly decays on the phase-
mixing time scaleV21R1/3.

The motion of a magnetic field line in thex direction
also consists of a superposition of an oscillation with fre-
quency V, and an oscillation with the local Alfve´n fre-
quency. However, in contrast to the motion in they direction,
the oscillation with frequencyV dominates the oscillation
with the local Alfvén frequency everywhere, except in the
vicinity of xg , after a time of the order ofg21, even in the
case whereg@VR21/3. This fact enables us to claim that the
global motion of the cavity, which is the coherent motion in
the x direction, attains its steady state after a time of the
order ofg21.

In the dissipative layer embracingxA the motion in thex
direction has an amplitude of the order of the driving ampli-
tude multiplied by ln R. Wheng&VR21/3, the amplitude of
the oscillation in thex direction with frequencyvr in the
vicinity of xg is of the same order of magnitude as in the
vicinity of xA . On the other hand, wheng@VR21/3, this
amplitude always remains smaller or of the order of the driv-
ing amplitude. These results show that the characteristic time
for the transition of the local motion to the steady state of
oscillation ist tr5max(g21,V21R1/3!.

The energy dissipation rate attains its stationary value
also after a time of the order oft tr . When uV2vru;V,
or uV2vru&g ~the case of the quasi-resonance!, it mono-
tonically increases to its stationary value. However, when
g!uV2vru!V, it oscillates with the beat frequency

uV2vru. This oscillation is caused by the overlapping of the
two dissipative layers, one embracingxA and the otherxg .
This phenomenon was first found in the numerical simula-
tion by Poedts and Kerner.24

Poedts and Kerner24 have found that the transitional time
to the steady state of energy dissipation is proportional to
R1/5 in the case of resonant driving (V5vr). We have found
in our analysis that this time is always proportional to R1/3,
no matter whether the driving is resonant or nonresonant.
However, this difference is not surprising at all. Poedts and
Kerner24 considered lateral driving in cylindrical geometry.
In addition, the wavelength in the direction of the cylinder
axis was of the order of the cylinder radius in their numerical
simulation, so the long-wavelength approximation is not ap-
plicable to their study. Hence, the setting of the problem in
the present article differs very much from that in the article
by Poedts and Kerner.24

The main conclusion that we make on the basis of our
analysis is that, in general, there are two different transitional
times in the problem of driven oscillations of a magnetic
cavity. The first transitional time is the time necessary for the
global motion of the cavity, which is the coherent motion in
the direction of the inhomogeneity, to attain a steady state of
oscillation. This time is of the order ofg21. The second
transitional time is the time necessary for the motion in they
direction, and the energy dissipation rate to attain their
steady states. This time is of the order oft tr .

Note that in practically all applicationsg@VR21/3. In
this respect let us consider one example from solar physics.
The ratio of the length of a coronal magnetic loop to its
radius is always smaller than 100. This implies the estimate
g/V*0.01. If we use the formulas based on classical Cou-
lomb collisions, we obtain R*1012. Assume that one end of
the loop has started to be harmonically driven with a period
of 1 min. Then the transition to the steady state of the global
oscillation of the loop, which can be observed, will take
about 1 h or less. On the other hand, the energy dissipation
rate in the loop attains its stationary value only after a few
days.

To make the main results obtained in this article more
accessible, we collected them in the following table:
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APPENDIX A: CALCULATION OF ­Pn Õ­x AT THE
INHOMOGENEOUS LAYER BOUNDARIES

In this appendix we calculate]Pn /]x at x50,a. In re-
gions I and IIP is determined by Eq.~11! with dr/dx50.
The substitution of Eq.~12! in this equation results in the
equation forPn . Pn vanishes asuxu→`. Since the cavity is
at rest fort<0, Pn5]Pn /]t50 at t50.

Let us first solve the equation forPn in region II. Sub-
stituting Pn5Q1Pn(a)e2knx8 with x85x2a into the equa-
tion for Pn , and dropping the prime, we obtain

]2Q

]t2 2VA
2 ]2Q

]x2 1VA
2kn

2Q52

d2Pn~a !

dt2 e2knx. ~A1!

Q satisfies the boundary conditionsQ50 at x50, Q→0 as
x→`, which enables us to expandQ into the sine-Fourier
integral:

Q~x !5

2

p
E

0

`

Qx sin~xx ! dx, Qx5E
0

`

Q~x !sin~xx ! dx.

~A2!

Then we obtain from Eq.~A1!

d2Qx

dt2 1VA
2 ~kn

2
1x2!Qx52

x

kn
2
1x2

d2Pn~a !

dt2 . ~A3!

The solution to this equation satisfying the initial conditions
Qx5dQx /dt50 at t50 is

Qx52E
0

t d2Pn~a !

dt2

x sin@VA~kn
2
1x2!1/2~ t2t !#

VA~kn
2
1x2!3/2 dt.

~A4!

Using Eq.~A2! and the relation betweenPn andQ, we ob-
tain from Eq.~A4!

]Pn

]x U
x5a

52knPn~a !2

2

pVA
E

0

t d2Pn~a !

dt2 dt

3E
0

` x2 sin@VA~kn
2
1x2!1/2~ t2t !#

~kn
2
1x2!3/2 dx.

~A5!

With the aid of the formula43

E
0

` sin@c~x2
1y2!1/2#

~x2
1y2!1/2 cos~bx !dx

5

p

2
H~c2b !J0@y~c2

2b2!1/2#

with H the Heaviside function, we obtain

E
0

` sin@VA~kn
2
1x2!1/2~ t2t !#

~kn
2
1x2!1/2 dx5

p

2
J0@VAkn~ t2t !#.

~A6!

Using this formula and integration by parts we eventually
transform Eq.~A5! into Eq. ~14! with j52. Equation~14!
with j51 is obtained from Eq.~14! with j52 by takinga
50 and substituting2x for x.

APPENDIX B: INVESTIGATION OF EQ. „57…

Let us find out when the amplitude of oscillations, de-
scribed by Eq.~57!, attains its maximum value ats50. We
consider the case whereg@dv . Discardinge2ivtt and the
constant multiplier, we write the essential part of Eq.~57!,
determining the dependence of the oscillation amplitude on
time, asF(j)5e2ajF(2ia,j), wherea5g/dv@1 andj
5tdv . The functionF~j! takes its maximum value atj de-
termined bydF/dj50. DifferentiatingF~j! and using inte-
gration by parts, we write this condition as

G~j ![E
0

j

s2 expS as2

1

3
s3D ds51. ~B1!

Since G(0)50, G(`).*0
`s2 exp(2s3/3)ds51, and dG/dj

.0, this equation has exactly one positive solution. Let us
try to find the solution satisfying the conditionj!1. This
condition enables us to neglects3/3 in the exponent in Eq.
~B1!, and rewrite it in the approximate form

~a2j2
22aj12!eaj

52a3. ~B2!

Obviously,j can satisfy this equation only ifaj@1, so we
can neglect the second and third term in the brackets. Then,
taking the logarithm of both sides of Eq.~B2!, we obtain

aj5ajm'3 lna22 ln lna. ~B3!

Sincejm satisfies the conditionsjm!1 andajm@1, it is the
approximate solution to Eq.~B1!. The second term on the
right-hand side of Eq.~B3! is much smaller than the first one
and can be neglected. Then, returning to the initial variables,
we obtain that the maximum amplitude in Eq.~57! is attained
at t5tm'3g21 ln(g/dv). Once again, neglectings3/3 in the
exponent in the expression forF~j!, we immediately obtain

F~jm!'a21
5dv /g. ~B4!

Note that dF/dj52e2aj@G(j)21#, so dF/dj,0 for j
.jm , i.e., F~j! monotonically decreases forj.jm .

Using integration by parts we obtain

F~j !5

1

a
e2j3/3

2

1

a
e2aj

1

1

a
e2aj

3E
0

j

s2 expS as2

1

3
s3D ds. ~B5!

Let us takej,a1/2. Then the second term on the right-hand
side of Eq.~B7! is much smaller than the first one and can be
neglected. If we substitutej2 for s2 in the integrand in the
last term, we increase this term, and obtainj2F(j)/a
,F(j). This implies that the last term also can be neglected.
Hence, forj,a1/2, we obtain the approximate expression

F~j !'a21e2j3/3. ~B6!
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