84 research outputs found

    Probing Single Vacancies in Black Phosphorus at the Atomic Level

    Get PDF
    Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of the surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.Comment: Nano Letters (2017

    An orbitally derived single-atom magnetic memory

    Get PDF
    A single magnetic atom on a surface epitomizes the scaling limit for magnetic information storage. Indeed, recent work has shown that individual atomic spins can exhibit magnetic remanence and be read out with spin-based methods, demonstrating the fundamental requirements for magnetic memory. However, atomic spin memory has been only realized on thin insulating surfaces to date, removing potential tunability via electronic gating or distance-dependent exchange-driven magnetic coupling. Here, we show a novel mechanism for single-atom magnetic information storage based on bistability in the orbital population, or so-called valency, of an individual Co atom on semiconducting black phosphorus (BP). Distance-dependent screening from the BP surface stabilizes the two distinct valencies and enables us to electronically manipulate the relative orbital population, total magnetic moment and spatial charge density of an individual magnetic atom without a spin-dependent readout mechanism. Furthermore, we show that the strongly anisotropic wavefunction can be used to locally tailor the switching dynamics between the two valencies. This orbital memory derives stability from the energetic barrier to atomic relaxation and demonstrates the potential for high-temperature single-atom information storage

    Nanoskyrmion engineering with spsp-electron materials: Sn monolayer on SiC(0001) surface

    Get PDF
    Materials with spsp-magnetism demonstrate strongly nonlocal Coulomb interactions, which opens a way to probe correlations in the regimes not achievable in transition metal compounds. By the example of Sn monolayer on SiC(0001) surface, we show that such systems exhibit unusual but intriguing magnetic properties at the nanoscale. Physically, this is attributed to the presence of a significant ferromagnetic coupling, the so-called direct exchange, which fully compensates ubiquitous antiferromagnetic interactions of the superexchange origin. Having a nonlocal nature, the direct exchange was previously ignored because it cannot be captured within the conventional density functional methods and significantly challenges ground state models earlier proposed for Sn/SiC(0001). Furthermore, heavy adatoms induce strong spin-orbit coupling, which leads to a highly anisotropic form of the spin Hamiltonian, in which the Dzyaloshinskii-Moriya interaction is dominant. The latter is suggested to be responsible for the formation of a nanoskyrmion state at realistic magnetic fields and temperatures.Comment: 4 pages, supplemental materia

    Solving Grid Equations Using the Alternating-triangular Method on a Graphics Accelerator

    Get PDF
    The paper describes a parallel-pipeline implementation of solving grid equations using the modified alternating-triangular iterative method (MATM), obtained by numerically solving the equations of mathematical physics. The greatest computational costs at using this method are on the stages of solving a system of linear algebraic equations (SLAE) with lower triangular and upper non-triangular matrices. An algorithm for solving the SLAE with a lower triangular matrix on a graphics accelerator using NVIDIA CUDA technology is presented. To implement the parallel-pipeline method, a three-dimensional decomposition of the computational domain was used. It is divided into blocks along the y coordinate, the number of which corresponds to the number of GPU streaming multiprocessors involved in the calculations. In turn, the blocks are divided into fragments according to two spatial coordinates — x and z. The presented graph model describes the relationship between adjacent fragments of the computational grid and the pipeline calculation process. Based on the results of computational experiments, a regression model was obtained that describes the dependence of the time for calculation one MATM step on the GPU, the acceleration and efficiency for SLAE solution with a lower triangular matrix by the parallel-pipeline method on the GPU were calculated using the different number of streaming multiprocessors.The paper describes a parallel-pipeline implementation of solving grid equations using the modified alternating-triangular iterative method (MATM), obtained by numerically solving the equations of mathematical physics. The greatest computational costs at using this method are on the stages of solving a system of linear algebraic equations (SLAE) with lower triangular and upper non-triangular matrices. An algorithm for solving the SLAE with a lower triangular matrix on a graphics accelerator using NVIDIA CUDA technology is presented. To implement the parallel-pipeline method, a three-dimensional decomposition of the computational domain was used. It is divided into blocks along the y coordinate, the number of which corresponds to the number of GPU streaming multiprocessors involved in the calculations. In turn, the blocks are divided into fragments according to two spatial coordinates — x and z. The presented graph model describes the relationship between adjacent fragments of the computational grid and the pipeline calculation process. Based on the results of computational experiments, a regression model was obtained that describes the dependence of the time for calculation one MATM step on the GPU, the acceleration and efficiency for SLAE solution with a lower triangular matrix by the parallel-pipeline method on the GPU were calculated using the different number of streaming multiprocessors

    Strong electron-phonon coupling and phonon-induced superconductivity in tetragonal C3_3N4_4 with hole doping

    Full text link
    C3_3N4_4 is a recently discovered phase of carbon-nitrides with the tetragonal crystal structure (arXiv:2209.01968) that is stable at ambient conditions. C3_3N4_4 is a semiconductor exhibiting flat-band anomalies in the valence band, suggesting the emergence of many-body instabilities upon hole doping. Here, using state-of-the-art first-principles calculations we show that hole-doped C3_3N4_4 reveals strong electron-phonon coupling, leading to the formation of a gapped superconducting state. The phase transition temperatures turns out to be strongly dependent on the hole concentration. We propose that holes could be injected into C3_3N4_4 via boron doping which induces, according to our results, a rigid shift of the Fermi energy without significant modification of the electronic structure. Based on the electron-phonon coupling and Coulomb pseudopotential calculated from first principles, we conclude that the boron concentration of 6 atoms per nm3^3 would be required to reach the critical temperature of \sim55 K at ambient pressure.Comment: 10 pages incl. Supplemental Material, 8 figure

    Dynamical correlations in single-layer CrI3_3

    Full text link
    Chromium triiodide is a magnetic van-der-Waals material with weak inter-layer interactions. It is one of the first materials for which intrinsic magnetism was observed down to the single-layer limit. This remarkable discovery fostered a whole new field of 2D magnetism and magnetic layered heterostructure research holding high promisses for spintronic applications. First-principles electronic structure calculations have an outstanding role in this field not only to describe the properties of existing 2D magnets, but also to predict new materials, and thus to guide the experimental progress. So far the most 2D magnet studies are based on standard density functional theory (DFT), which poorly addresses the effects of strong electron correlations. Here, we provide a first-principles description of finite-temperature magnetic and spectral properties of monolayer CrI3_3 based on fully charge self-consistent DFT combined with dynamical mean field theory (DFT+DMFT), revealing a formation of local moments on Cr from strong local Coulomb interactions. We show that local dynamical correlations play an important role in the electronic structure of CrI3_3. In contrast to conventional DFT+UU calculations, we find that the top of the valence band in monolayer CrI3_3 demonstrates essentially different orbital character for minority and majority spin states. This results in a strong spin-polarization of the optical conductivity upon hole doping, which could be verified experimentally.Comment: 13 pages, 4 figure

    An effective spin model on the honeycomb lattice for the description of magnetic properties in two-dimensional Fe3_3GeTe2_2

    Full text link
    Fe3_3GeTe2_2 attracts significant attention due to technological perspectives of realizing room temperature ferromagnetism in two-dimensional materials. Here we show that due to structural peculiarities of the Fe3_3GeTe2_2 monolayer, short distance between the neighboring iron atoms induces a strong exchange coupling. This strong coupling allows us to consider them as an effective cluster with a magnetic moment \sim5 μB\mu_B, giving rise to a simplified spin model on a bipartite honeycomb lattice with the reduced number of long-range interactions. The simplified model perfectly reproduces the results of the conventional spin model, but allows for a more tractable description of the magnetic properties of Fe3_3GeTe2_2, which is important, e.g., for large-scale simulations. Also, we discuss the role of biaxial strain in the stabilization of ferromagnetic ordering in Fe3_3GeTe2_2.Comment: 7 pages, 7 figure

    Charge transfer-induced Lifshitz transition and magnetic symmetry breaking in ultrathin CrSBr crystals

    Full text link
    Ultrathin CrSBr flakes are exfoliated \emph{in situ} on Au(111) and Ag(111) and their electronic structure is studied by angle-resolved photoemission spectroscopy. The thin flakes' electronic properties are drastically different from those of the bulk material and also substrate-dependent. For both substrates, a strong charge transfer to the flakes is observed, partly populating the conduction band and giving rise to a highly anisotropic Fermi contour with an Ohmic contact to the substrate. The fundamental CrSBr band gap is strongly renormalized compared to the bulk. The charge transfer to the CrSBr flake is substantially larger for Ag(111) than for Au(111), but a rigid energy shift of the chemical potential is insufficient to describe the observed band structure modifications. In particular, the Fermi contour shows a Lifshitz transition, the fundamental band gap undergoes a transition from direct on Au(111) to indirect on Ag(111) and a doping-induced symmetry breaking between the intra-layer Cr magnetic moments further modifies the band structure. Electronic structure calculations can account for non-rigid Lifshitz-type band structure changes in thin CrSBr as a function of doping and strain. In contrast to undoped bulk band structure calculations that require self-consistent GWGW theory, the doped thin film properties are well-approximated by density functional theory if local Coulomb interactions are taken into account on the mean-field level and the charge transfer is considered
    corecore