454 research outputs found

    How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication

    Get PDF
    Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections

    Metabolic host responses to infection by intracellular bacterial pathogens

    Get PDF
    The interaction of bacterial pathogens with mammal an hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies

    Coordinate Activation of Activator Protein 1 and Inflammatory Cytokines in Response to Neisseria gonorrhoeae Epithelial Cell Contact Involves Stress Response Kinases

    Get PDF
    Neisseria gonorrhoeae (Ngo), the etiologic agent of gonorrhea, induce a number of proinflammatory cytokines by contact to epithelial cells. Cytokine genes and a variety of other immune response genes are activated as a result of the regulatory function of immediate early response transcription factors including activator protein 1 (AP-1). Since it is established that phosphorylation of c-Jun, the central component of AP-1, by the stress-activated c-Jun NH2-terminal kinase (JNK) increases the transcriptional activity of AP-1, we studied whether Ngo could induce stress response pathways involving JNK. We found that virulent Ngo strains induce phosphorylation and activation of JNK but not of p38 kinase. Analysis of a nonpathogenic Ngo strain revealed only weak JNK activation. In respect to the molecular components upstream of the JNK signaling cascade, we show that a dominant negative mutant of MAP kinase kinase 4 (MKK4) represses transcription of an AP-1–dependent reporter gene. Regarding upstream stress response factors involved in Ngo-induced MKK4/JNK/AP-1 activation, we identified p21-activated kinase (PAK) but not MAPK/ERK kinase kinase (MEKK1). Inhibition of small GTPases including Rac1 and Cdc42 by Toxin B prevented JNK and AP-1 activation. Our results indicate that Ngo induce the activation of proinflammatory cytokines via a cascade of cellular stress response kinases involving PAK, which directs the signal from the Rho family of small GTPases to JNK/AP-1 activation

    Mcl-1 Is a Key Regulator of Apoptosis Resistance in Chlamydia trachomatis-Infected Cells

    Get PDF
    Chlamydia are obligate intracellular bacteria that cause variety of human diseases. Host cells infected with Chlamydia are protected against many different apoptotic stimuli. The induction of apoptosis resistance is thought to be an important immune escape mechanism allowing Chlamydia to replicate inside the host cell. Infection with C. trachomatis activates the Raf/MEK/ERK pathway and the PI3K/AKT pathway. Here we show that inhibition of these two pathways by chemical inhibitors sensitized C. trachomatis infected cells to granzyme B-mediated cell death. Infection leads to the Raf/MEK/ERK-mediated up-regulation and PI3K-dependent stabilization of the anti-apoptotic Bcl-2 family member Mcl-1. Consistently, interfering with Mcl-1 up-regulation sensitized infected cells for apoptosis induced via the TNF receptor, DNA damage, granzyme B and stress. Our data suggest that Mcl-1 up-regulation is primarily required to maintain apoptosis resistance in C. trachomatis-infected cells

    Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens

    Get PDF
    Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs

    To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection

    Get PDF
    Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naive, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro-or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens

    IAP-IAP Complexes Required for Apoptosis Resistance of C. trachomatis–Infected Cells

    Get PDF
    Host cells infected with obligate intracellular bacteria Chlamydia trachomatis are profoundly resistant to diverse apoptotic stimuli. The molecular mechanisms underlying the block in apoptotic signaling of infected cells is not well understood. Here we investigated the molecular mechanism by which apoptosis induced via the tumor necrosis factor (TNF) receptor is prevented in infected epithelial cells. Infection with C. trachomatis leads to the up-regulation of cellular inhibitor of apoptosis (cIAP)-2, and interfering with cIAP-2 up-regulation sensitized infected cells for TNF-induced apoptosis. Interestingly, besides cIAP-2, cIAP-1 and X-linked IAP, although not differentially regulated by infection, are required to maintain apoptosis resistance in infected cells. We detected that IAPs are constitutively organized in heteromeric complexes and small interfering RNA–mediated silencing of one of these IAPs affects the stability of another IAP. In particular, the stability of cIAP-2 is modulated by the presence of X-linked IAP and their interaction is stabilized in infected cells. Our observations suggest that IAPs are functional and stable as heteromers, a thus far undiscovered mechanism of IAP regulation and its role in modulation of apoptosis

    Discovery of multi-anion antiperovskites X<sub>6</sub>NFSn<sub>2</sub> (X = Ca, Sr) as promising thermoelectric materials by computational screening

    Get PDF
    The thermoelectric performance of existing perovskites lags far behind that of state-of-the-art thermoelectric materials such as SnSe. Despite halide perovskites showing promising thermoelectric properties, namely, high Seebeck coefficients and ultralow thermal conductivities, their thermoelectric performance is significantly restricted by low electrical conductivities. Here, we explore new multi-anion antiperovskites X6NFSn2 (X = Ca, Sr, and Ba) via B-site anion mutation in antiperovskite and global structure searches and demonstrate their phase stability by first-principles calculations. Ca6NFSn2 and Sr6NFSn2 exhibit decent Seebeck coefficients and ultralow lattice thermal conductivities (&lt;1 W m−1 K−1). Notably, Ca6NFSn2 and Sr6NFSn2 show remarkably larger electrical conductivities compared to the halide perovskite CsSnI3. The combined superior electrical and thermal properties of Ca6NFSn2 and Sr6NFSn2 lead to high thermoelectric figures of merit (ZTs) of ∼1.9 and ∼2.3 at high temperatures. Our exploration of multi-anion antiperovskites X6NFSn2 (X = Ca, Sr) realizes the “phonon-glass, electron-crystal” concept within the antiperovskite structure
    corecore