5 research outputs found

    Catalytic Transfer of Magnetism Using a Neutral Iridium Phenoxide Complex

    Get PDF
    © 2015 American Chemical Society. A novel neutral iridium carbene complex Ir(κC,O-L1)(COD) (1) [where COD = cyclooctadiene and L1 = 3-(2-methylene-4-nitrophenolate)-1-(2,4,6-trimethylphenyl)imidazolylidene] with a pendant alkoxide ligand has been prepared and characterized. It contains a strong Ir–O bond, and X-ray analysis reveals a distorted square planar structure. NMR spectroscopy reveals dynamic solution-state behavior commensurate with rapid seven-membered ring flipping. In CD2Cl2 solution, under hydrogen at low temperature, this complex dominates, although it exists in equilibrium with a reactive iridium dihydride cyclooctadiene complex. 1 reacts with pyridine and H2 to form neutral Ir(H)2(κC,O-L1)(py)2, which also exists in two conformers that differ according to the orientation of the seven-membered metallocycle, and while its Ir–O bond remains intact, the complex undergoes both pyridine and H2 exchange. As a consequence, when placed under para-hydrogen, efficient polarization transfer catalysis (PTC) is observed via the signal amplification by reversible exchange (SABRE) approach. Due to the neutral character of this catalyst, good hyperpolarization activity is shown in a wide range of solvents for a number of substrates. These observations reflect a dramatic improvement in solvent tolerance of SABRE over that reported for the best PTC precursor IrCl(IMes)(COD). For THF, the associated 1H NMR signal enhancement for the ortho proton signal of pyridine shows an increase of 600-fold at 298 K. The level of signal enhancement can be increased further through warming or varying the magnetic field experienced by the sample at the point of catalytic magnetization transfer

    Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    No full text
    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), A(n+1)B(n)O(3n+1), thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Sr(n+1)Ti(n)O(3n+1) thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure

    Deposition and characterisation of epitaxial oxide thin films for SOFCs

    No full text
    corecore