8 research outputs found

    Mannitol-induced drought stress on calli of <i style="mso-bidi-font-style:normal">Trigonella foenum-graecum </i>L. Var. RMt-303.

    No full text
    1128-1137Different explants of fenugreek, <i style="mso-bidi-font-style: normal">T. foenum-graecum L. (Var. RMt-303), were compared for their callus induction and subsequent shoot regeneration capabilities on Murashige and Skoog media supplemented with different phytohormones in varying concentration. The highest percentage of callus induction frequency was observed in 1ppm benzylaminopurine (BAP). Maximum shoots were induced on media supplemented with 0.5ppm BAP using leaf and stem tissues as explants. However, root tissues showed only callusing with no subsequent shooting. Cotyledonary node responded better than hypocotyls in terms of shoot induction on media supplemented with thidiazuron (0.1ppm). The callus was subjected to drought stress as simulated by reduced water potential of growth media due to addition of mannitol. Calli could withstand -2 MPa water potential till 30 days indicating that the drought stress tolerance mechanisms are functional in this variety. Chlorophyll a and b and total chlorophyll, proline and total phenolic contents, total peroxidase and catalase activities increased under stress conditions suggesting the tolerance of callus to drought stress. However, ascorbate peroxidase, guaiacol peroxidase activities were found to decrease slightly. Malondialdehyde and H2O2 contents were found to decrease while only a slight disturbance was found in membrane stability index. These results underline the mechanisms that are crucial for drought stress tolerance in fenugreek

    Viral tropical fever in our country

    No full text
    Microarray analyses of rice tissues challenged with the Asian rice gall midge biotype 1 (GMB1). Transcripts have been placed into several bins using MapMan software and information relating to fold change in relative gene expression values (fold change) between infested (RPI) and un-infested tissues (RPUI), Affymetrix gene ids, description of the transcript is provided. RP: indica rice variety RP2068-18-3-5. (XLSX 234 kb

    Not Available

    No full text
    Not AvailableBackground An incompatible interaction between rice (Oryza sativa) and the Asian rice gall midge (AGM, Orseolia oryzae Wood-Mason), that is usually manifested through a hypersensitive response (HR), represents an intricate relationship between the resistant host and its avirulent pest. We investigated changes in the transcriptome and metabolome of the host (indica rice variety: RP2068-18-3-5, RP), showing HR when attacked by an avirulent gall midge biotype (GMB1), to deduce molecular and biochemical bases of such a complex interaction. Till now, such an integrated analysis of host transcriptome and metabolome has not been reported for any rice-insect interaction. Results Transcript and metabolic profiling data revealed more than 7000 differentially expressed genes and 80 differentially accumulated metabolites, respectively, in the resistant host. Microarray data revealed deregulation of carbon (C) and nitrogen (N) metabolism causing a C/N shift; up-regulation of tetrapyrrole synthesis and down-regulation of chlorophyll synthesis and photosynthesis. Integrated results revealed that genes involved in lipid peroxidation (LPO) were up-regulated and a marker metabolite for LPO (azelaic acid) accumulated during HR. This coincided with a greater accumulation of GABA (neurotransmitter and an insect antifeedant) at the feeding site. Validation of microarray results by semi-quantitative RT-PCR revealed temporal variation in gene expression profiles. Conclusions The study revealed extensive reprogramming of the transcriptome and metabolome of RP upon GMB1 infestation leading to an HR that was induced by the generation and release of reactive oxygen species i.e. singlet oxygen and resulted in LPO-mediated cell death. RP thus used HR as a means to limit nutrient supply to the feeding maggots and simultaneously accumulated GABA, strategies that could have led to maggot mortality. The integrated results of transcript and metabolic profiling, for the first time, provided insights into an HR+ type of resistance in rice against gall midge.Not Availabl

    Genetic Diversity and Streptomycin Sensitivity in <i>Xanthomonas axonopodis</i> pv. <i>punicae</i> Causing Oily Spot Disease in Pomegranates

    No full text
    Xanthomonas axonopodis pv. punicae (Xap) causes bacterial blight disease in pomegranates, often leading to 60–80% economic loss. In absence of a suitable Xap-resistant variety, the near-monoculture of the susceptible variety, Bhagwa, has aggravated the problem further. In recent times, Xap has spread to different geographical regions, indicating the wide adaptability of the pathogen. Moreover, lower sensitivity of Xap towards streptocycline containing streptomycin sulphate and tetracycline sulphate (9:1) under field conditions is frequently reported. Therefore, the current study was undertaken to assess the genetic variability of Xap isolates using SSR markers, their in vitro sensitivity towards streptomycin was evaluated, and the probable molecular basis of acquired resistance was studied. Two highly diverse isolates showed extreme differences in their pathogenicity, indicating the highly evolving nature of the pathogen. Moreover, all the isolates showed less than 50% growth inhibition on media containing 1500 µg/mL streptomycin, indicating a lower level of antibiotic sensitivity. On the molecular level, 90% of the isolates showed the presence of strA-strB genes involved in streptomycin metabolism. Additionally, G to A transitions were observed in the rpsL gene in some of the isolates. The molecular data suggest that horizontal gene transfer (strAB) and/or spontaneous gene mutation (in rpsL) could be responsible for the observed lower sensitivity of Xap towards streptomycin

    Genetic Diversity and Streptomycin Sensitivity in Xanthomonas axonopodis pv. punicae Causing Oily Spot Disease in Pomegranates

    No full text
    Xanthomonas axonopodis pv. punicae (Xap) causes bacterial blight disease in pomegranates, often leading to 60&ndash;80% economic loss. In absence of a suitable Xap-resistant variety, the near-monoculture of the susceptible variety, Bhagwa, has aggravated the problem further. In recent times, Xap has spread to different geographical regions, indicating the wide adaptability of the pathogen. Moreover, lower sensitivity of Xap towards streptocycline containing streptomycin sulphate and tetracycline sulphate (9:1) under field conditions is frequently reported. Therefore, the current study was undertaken to assess the genetic variability of Xap isolates using SSR markers, their in vitro sensitivity towards streptomycin was evaluated, and the probable molecular basis of acquired resistance was studied. Two highly diverse isolates showed extreme differences in their pathogenicity, indicating the highly evolving nature of the pathogen. Moreover, all the isolates showed less than 50% growth inhibition on media containing 1500 &micro;g/mL streptomycin, indicating a lower level of antibiotic sensitivity. On the molecular level, 90% of the isolates showed the presence of strA-strB genes involved in streptomycin metabolism. Additionally, G to A transitions were observed in the rpsL gene in some of the isolates. The molecular data suggest that horizontal gene transfer (strAB) and/or spontaneous gene mutation (in rpsL) could be responsible for the observed lower sensitivity of Xap towards streptomycin

    Characterization of <i>Alternaria</i> and <i>Colletotrichum</i> Species Associated with Pomegranate (<i>Punica</i> <i>granatum</i> L.) in Maharashtra State of India

    No full text
    Fungal pathogens are a major constraint affecting the quality of pomegranate production around the world. Among them, Alternaria and Colletotrichum species cause leaf spot, fruit spot or heart rot (black rot), and fruit rot (anthracnose) or calyx end rot, respectively. Accurate identification of disease-causing fungal species is essential for developing suitable management practices. Therefore, characterization of Alternaria and Colletotrichum isolates representing different geographical regions, predominantly Maharashtra—the Indian hub of pomegranate production and export—was carried out. Fungal isolates could not be identified based on morphological characteristics alone, hence were subjected to multi-gene phylogeny for their accurate identification. Based on a maximum likelihood phylogenetic tree, Alternaria isolates were identified as within the A. alternata species complex and as A. burnsii, while Colletotrichum isolates showed genetic closeness to various species within the C. gloeosporioides species complex. Thus, the current study reports for the first time that, in India, the fruit rots of pomegranate are caused by multiple species and not a single species of Alternaria and Colletotrichum alone. Since different species have different epidemiology and sensitivity toward the commercially available and routinely applied fungicides, the precise knowledge of the diverse species infecting pomegranate, as provided by the current study, is the first step towards devising better management strategies
    corecore