70 research outputs found

    Real-time acoustic sensing and control of metalorganic chemical vapor deposition precursor concentrations delivered from solid phase sources

    Get PDF
    We have investigated the performance and potential benefit of acoustic sensing for real-time monitoring and closed loop control of binary gas mixture compositions delivered from low vapor pressure metalorganic sources. Two solid phase sources were investigated in the presence of H 2 as a carrier gas: (1) trimethylindium (TMI) and (2) bis(cyclopentadienyl) magnesium ͑Cp 2 Mg͒, which have room temperature ͑25°C͒ vapor pressures of 2.5 and 0.04 Torr, respectively. An acoustic sensor was implemented on the gas feed line to measure the concentration-dependent speed of sound in the gas mixture. This enabled sensitivity and control at precursor levels as low as 0.6 ppm in H 2 . Closed loop process control was implemented to maintain TMI and Cp 2 Mg concentration target in the presence of intentionally introduced long term temperature drifts. Despite induced variations of the precursor vapor pressure up to 50%, the delivered composition was controlled to within ±0.15% for TMI (at 0.5 mol% set point) and ±0.3% for Cp 2 Mg (at 0.01 mol% set point). Short term variability could also be substantially reduced by the control scheme. This work demonstrates the feasibility of sensor-driven control systems for stable delivery of low vapor pressure, normally problematic precursor materials. In turn, this opens the door to utilization of a broader range of species which can be synthesized as chemical precursors

    Real-time acoustic sensing and control of metalorganic chemical vapor deposition precursor concentrations delivered from solid phase sources

    Get PDF
    We have investigated the performance and potential benefit of acoustic sensing for real-time monitoring and closed loop control of binary gas mixture compositions delivered from low vapor pressure metalorganic sources. Two solid phase sources were investigated in the presence of H 2 as a carrier gas: (1) trimethylindium (TMI) and (2) bis(cyclopentadienyl) magnesium ͑Cp 2 Mg͒, which have room temperature ͑25°C͒ vapor pressures of 2.5 and 0.04 Torr, respectively. An acoustic sensor was implemented on the gas feed line to measure the concentration-dependent speed of sound in the gas mixture. This enabled sensitivity and control at precursor levels as low as 0.6 ppm in H 2 . Closed loop process control was implemented to maintain TMI and Cp 2 Mg concentration target in the presence of intentionally introduced long term temperature drifts. Despite induced variations of the precursor vapor pressure up to 50%, the delivered composition was controlled to within ±0.15% for TMI (at 0.5 mol% set point) and ±0.3% for Cp 2 Mg (at 0.01 mol% set point). Short term variability could also be substantially reduced by the control scheme. This work demonstrates the feasibility of sensor-driven control systems for stable delivery of low vapor pressure, normally problematic precursor materials. In turn, this opens the door to utilization of a broader range of species which can be synthesized as chemical precursors

    Crystal structure of mixed fluorites Ca(1-x)Sr(x)F(2) and Sr(1-x)Ba(x)F(2) and luminescence of Eu(2+) in the crystals

    Full text link
    Within the framework of the virtual crystal method implemented in the shell model and pair potential approximation the crystal structure of mixed fluorites Ca(1-x)Sr(x)F(2) and Sr(1-x)Ba(x)F(2) has been calculated. The impurity center Eu(2+) and the distance Eu(2+)-F in this crystals have been also calculated. The low level position of excited 4f65d configuration of the Eu(2+) ion has been expressed using phenomenological dependence on distance E(2+)-F. The dependences of Stokes shift and Huang-Rhys factor on concentration x have been received for yellow luminescence in Sr(1-x)Ba(x)F(2):Eu(2+). The value x, for which the eg -level of Eu(2+) ion will be in conduction band in Sr(1-x)Ba(x)F(2):Eu(2+) has been calculated.Comment: 8 pages, 3 figures. The manuscript is sent to journal 'Physics of the solid state'. The results will be submitted on inernational conference SCINTMAT'2002 in oral session (june,20-22,2002,Ekaterinburg,Russia). Corresponding author e-mail: [email protected]

    Electronic structure of fluorides: general trends for ground and excited state properties

    Full text link
    The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2CaF_{2},SrF2SrF_{2}, BaF2BaF_{2}, CdF2CdF_{2}, HgF2HgF_{2}, β\beta -PbF2PbF_{2}, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2HgF_{2} have been presented

    Data Management and Visualization of X-Ray Diffraction Spectra from Thin Film Ternary Composition Spreads

    Get PDF
    We discuss techniques for managing and visualizing x-ray diffraction spectrum data for thin film composition spreads which map large fractions of ternary compositional phase diagrams. An in-house x-ray microdiffractometer is used to obtain spectra from over 500 different compositions on an individual spread. The MATLAB software is used to quickly organize the data and create various plots from which one can quickly grasp different information regarding structural and phase changes across the composition spreads. Such exercises are valuable in rapidly assessing the “overall” picture of the structural evolution across phase diagrams before focusing in on specific composition regions for detailed structural analysis. We have also shown that simple linear correlation analysis of the x-ray diffraction peak information (position, intensity and full width at half maximum) and physical properties such as magnetization can be used to obtain insight about the physical properties
    corecore