76 research outputs found

    Super-resonances in a dielectric mesoscale sphere immersed in water: effects in extreme field localization of acoustic wave

    Full text link
    We predict acoustic super resonance modes with a field-intensity enhancement several tens of thousands of times higher (order of magnitude: 104 -10 5) with the support of dielectric mesoscale spheres submerged in water, by means of numerical simulations. The super resonances are related to the internal dispersion in specific values of both Mie and particle material parameters, being responsible for the generation of giant fields within the particles and near its surface. Taking into account the analogy between electromagnetic and acoustic waves, this phenomenon is valid in the electromagnetic (optical) wave band.Rubio Michavila, C.; Minin, IV.; Minin, OV.; Uris Martínez, A. (2019). Super-resonances in a dielectric mesoscale sphere immersed in water: effects in extreme field localization of acoustic wave. Acoustical Society of America. 1-7. https://doi.org/10.1121/2.0001139S1

    On the focusing enhancement of Soret zone plates with ultrasound directional transducers

    Full text link
    All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).[EN] This work analyzes the influence of the distribution of transparent Fresnel regions over the focusing profile of Soret Zone Plates. It is shown that this effect becomes very significant in those fields where directional transducers are employed, such as microwaves or acoustics. A thorough analysis on both the lens transmission efficiency and the focusing enhancement factor is presented. Moreover, experimental measurements are also carried out, validating the theoretical model and demonstrating that the distribution of transparent Fresnel regions becomes a critical parameter in applications requiring directional emitters.This work was supported by Spanish MINECO TEC2015-70939-R and MICINN RTI2018-100792-B-I00 projects. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant Program No. PAID-01-18.Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P.; Rubio Michavila, C. (2019). On the focusing enhancement of Soret zone plates with ultrasound directional transducers. Applied Physics Letters. 114(22):224101-1-224101-5. https://doi.org/10.1063/1.5100219S224101-1224101-511422Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Liang, Z., & Li, J. (2012). Extreme Acoustic Metamaterial by Coiling Up Space. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.114301Li, Y., Liang, B., Tao, X., Zhu, X., Zou, X., & Cheng, J. (2012). Acoustic focusing by coiling up space. Applied Physics Letters, 101(23), 233508. doi:10.1063/1.4769984Li, Y., Yu, G., Liang, B., Zou, X., Li, G., Cheng, S., & Cheng, J. (2014). Three-dimensional Ultrathin Planar Lenses by Acoustic Metamaterials. Scientific Reports, 4(1). doi:10.1038/srep06830Xia, J., Zhang, X., Sun, H., Yuan, S., Qian, J., & Ge, Y. (2018). Broadband Tunable Acoustic Asymmetric Focusing Lens from Dual-Layer Metasurfaces. Physical Review Applied, 10(1). doi:10.1103/physrevapplied.10.014016Kipp, L., Skibowski, M., Johnson, R. L., Berndt, R., Adelung, R., Harm, S., & Seemann, R. (2001). Sharper images by focusing soft X-rays with photon sieves. Nature, 414(6860), 184-188. doi:10.1038/35102526Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S., & Viegas, J. (2017). Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Scientific Reports, 7(1). doi:10.1038/s41598-017-04490-2Hristov, H. D., & Herben, M. H. A. J. (1995). Millimeter-wave Fresnel-zone plate lens and antenna. IEEE Transactions on Microwave Theory and Techniques, 43(12), 2779-2785. doi:10.1109/22.475635Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Molerón, M., Serra-Garcia, M., & Daraio, C. (2014). Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 105(11), 114109. doi:10.1063/1.4896276Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C., & Belmar, F. (2018). On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Applied Physics Letters, 112(26), 264102. doi:10.1063/1.503671

    Design of Binary-Sequence Zone Plates in High Wavelength Domains

    Full text link
    [EN] The design of zone plates is an important topic in many areas of physics, such as optics, X-rays, microwaves or ultrasonics. In this paper, a zone plate design method, which provides high flexibility in the shaping of the focusing profile, is analyzed. This flexibility is achieved through the use of binary sequences that produce zone plates with different properties and applications. It is shown that this binary-sequence method works properly at low wavelengths, but requires a modification term to work accurately in high wavelength domains. This additional term extends this powerful design method to any wavelength. Simulation results show acoustic focusing profiles for Fresnel, Fibonacci and Cantor zone plates operating at a wavelength of 1.5 mm without any distortion.This work was supported by the Spanish MINECO (TEC2015-70939-R).Fuster Escuder, JM.; Pérez-López, S.; Candelas Valiente, P.; Rubio Michavila, C. (2018). Design of Binary-Sequence Zone Plates in High Wavelength Domains. Sensors. 18(8):2604-1-2604-8. https://doi.org/10.3390/s18082604S2604-12604-8188Tamura, S., Yasumoto, M., Kamijo, N., Takeuchi, A., Uesugi, K., Terada, Y., & Suzuki, Y. (2009). Quasi-blazed type multilayer zone plate for X-rays. Vacuum, 84(5), 578-580. doi:10.1016/j.vacuum.2009.03.037Hristov, H. D., & Rodriguez, J. M. (2012). Design Equation for Multidielectric Fresnel Zone Plate Lens. IEEE Microwave and Wireless Components Letters, 22(11), 574-576. doi:10.1109/lmwc.2012.2224099Yang, R., Tang, W., & Hao, Y. (2011). A broadband zone plate lens from transformation optics. Optics Express, 19(13), 12348. doi:10.1364/oe.19.012348Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Stout-Grandy, S. M., Petosa, A., Minin, I. V., Minin, O. V., & Wight, J. (2006). A Systematic Study of Varying Reference Phase in the Design of Circular Fresnel Zone Plate Antennas. IEEE Transactions on Antennas and Propagation, 54(12), 3629-3637. doi:10.1109/tap.2006.886552Fuster, J., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S., & Rubio, C. (2017). Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency. Sensors, 17(12), 2809. doi:10.3390/s17122809Kennedy, J. E., Wu, F., ter Haar, G. R., Gleeson, F. V., Phillips, R. R., Middleton, M. R., & Cranston, D. (2004). High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics, 42(1-9), 931-935. doi:10.1016/j.ultras.2004.01.089Monsoriu, J. A., Calatayud, A., Remon, L., Furlan, W. D., Saavedra, G., & Andres, P. (2013). Bifocal Fibonacci Diffractive Lenses. IEEE Photonics Journal, 5(3), 3400106-3400106. doi:10.1109/jphot.2013.2248707Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971Ferrando, V., Giménez, F., Furlan, W. D., & Monsoriu, J. A. (2015). Bifractal focusing and imaging properties of Thue–Morse Zone Plates. Optics Express, 23(15), 19846. doi:10.1364/oe.23.019846Machado, F., Ferrando, V., Furlan, W. D., & Monsoriu, J. A. (2017). Diffractive m-bonacci lenses. Optics Express, 25(7), 8267. doi:10.1364/oe.25.00826

    Elaboración y validación de materiales para la formación del profesorado de Educación Primaria, con el objetivo de que sus alumnos aprendan la competencia de Pensamiento Computacional

    Full text link
    [EN] Programming and Robotics are some of the disciplines that have entered the classrooms with the aim of developing one of the competencies that are considered most relevant in today's education: Computational Thinking. Computational Thinking helps to structure the minds of the students, providing the necessary tools to solve problems in a precise and orderly manner. This fact has motivated the creation and validation of a proposal for learning materials which would allow to improve the way in which children develop that competence. The greatest challenge would be to train future teachers so that they are able to encourage these skills in students. To validate the learning materials, an exploratory research was carried out using a Delphi method based on two rounds in which 10 experts from different disciplines participated, all of them with a strong technological component. The experts completed a valuation questionnaire with the objective of analyzing the strengths and weaknesses of the proposal, taking as a reference the contents, the methodology, the resources and the evaluation system. Finally, after these assessments were carried out, a consensus was reached, validating the proposal and preparing it to be applied in a real context.[ES] La programación y la robótica son algunas de las disciplinas que han invadido las aulas con el objetivo de desarrollar una de las competencias consideradas de mayor relevancia en la educación de hoy día: el Pensamiento Computacional. El Pensamiento Computacional ayuda a estructurar la mente, aportando las herramientas necesarias para resolver problemas de un modo preciso y ordenado. Este hecho ha motivado la creación y validación de una propuesta de materiales de aprendizaje que permitan perfeccionar el modo en el que los niños mejoran dicha competencia. El gran reto se encuentra en formar y acompañar a los futuros profesores para que estos sean capaces de fomentar dichas habilidades en los alumnos. Para validar los materiales, se realizó una investigación exploratoria que empleó un método Delphi basado en dos rondas en las que participaron 10 expertos de diferentes disciplinas, todos ellos con una fuerte componente tecnológica. Los expertos completaron un cuestionario de valoración para analizar los puntos fuertes y puntos débiles de la propuesta, tomando como referencia los contenidos, la metodología, los recursos y el sistema de evaluación. Finalmente, tras dichas valoraciones se alcanzó un consenso que validó la propuesta, quedando lista para ser aplicada en un contexto real.Rubio Michavila, C.; González Suárez, K.; Escandell Bermúdez, M. (2018). Elaboración y validación de materiales para la formación del profesorado de Educación Primaria, con el objetivo de que sus alumnos aprendan la competencia de Pensamiento Computacional. En IN-RED 2018. IV Congreso Nacional de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 1276-1284. https://doi.org/10.4995/INRED2018.2018.8732OCS1276128

    Enhancement of pupil-masked wavelength-scale gas-filled flat acoustic lens based on anomaly apodization effect

    Full text link
    [EN] In this letter, the improvement in focus by the use of a pupil mask produced in an acoustic mesoscale cuboid particle ¿lled with CO2 is reported. Thereby, the result shows that the pupil mask increases the sound intensity and also increases the resolution (or a reduction of the full width at half maximum, FWHM) in focus compared to the non-masked one. These results are important because they con¿rm the effect of abnormal amplitude apodization for a one-wavelength dimension acoustic lens and demonstrate that it is possible to improve sound focusing of a cuboid gas-¿lled lens with one wavelength dimension. This is the smallest size of an acoustic lens ever considered in this type of literature, with side dimensions of the cube equal to one wavelength and a diameter to focus ratio of 2.5, the sound ampli¿cation in focus is 5.4 dB at 4125 Hz, with the resolution near to the diffraction limit.This work has been supported by TEC2015-70939-R (MINECO/FEDER). The research was partially supported by Tomsk Polytechnic University Competitiveness Enhancement Program.Rubio Michavila, C.; Tarrazó-Serrano, D.; Minin, OV.; Uris Martínez, A.; Minin, IV. (2019). Enhancement of pupil-masked wavelength-scale gas-filled flat acoustic lens based on anomaly apodization effect. Physics Letters A. 383:396-399. https://doi.org/10.1016/j.physleta.2018.11.014S39639938

    Transient Analysis of Fresnel Zone Plates for Ultrasound Focusing Applications

    Full text link
    [EN] Fresnel Zone Plates are planar lenses that can be used to focus ultrasound beams. This kind of acoustic lenses can play a key role in the resolution of ultrasonic NDT systems. In this type of pulse-echo applications, the pulse duration is an important parameter that specifies the axial resolution, and thus, shorter ultrasound pulses provide higher resolutions. However, acoustic lenses exhibit a transient response that should be considered when setting the pulse duration, as pulses shorter than the transient state duration result in degradation in the response of acoustic lenses in terms of focal intensity, focal displacement, and lateral and axial resolutions. In this work, a thorough analysis of the transient response of Fresnel Zone Plates is discussed, demonstrating that the transient state should be considered in order to achieve optimal focusing performance. Theoretical and numerical results are presented, showing very good agreement.This work has been supported by Spanish MICINN RTI2018-100792-B-I00 project, Generalitat Valenciana AICO/2020/139 and the Russian Governmental program "Science" project FSWW-2020-0014. The research is carried out within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant VIU-MNOL NK 187/2020. S.P.-L. acknowledges financial support from Universitat Politècnica de València grant program PAID-01-18. D.T.-S. acknowledges financial support from MICINN BES-2016-07713 project.Pérez-López, S.; Tarrazó-Serrano, D.; Dolmatov, DO.; Rubio Michavila, C.; Candelas Valiente, P. (2020). Transient Analysis of Fresnel Zone Plates for Ultrasound Focusing Applications. Sensors. 20(23):1-9. https://doi.org/10.3390/s20236824S192023Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J. P., & Mason, T. J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 11(3-4), 261-265. doi:10.1016/j.ultsonch.2004.01.015Li, J.-T., Han, J.-F., Yang, J.-H., & Li, T.-S. (2003). An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation. Ultrasonics Sonochemistry, 10(3), 119-122. doi:10.1016/s1350-4177(03)00092-0McCann, D. ., & Forde, M. . (2001). Review of NDT methods in the assessment of concrete and masonry structures. NDT & E International, 34(2), 71-84. doi:10.1016/s0963-8695(00)00032-3Chen, J., Xiao, J., Lisevych, D., Shakouri, A., & Fan, Z. (2018). Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens. Nature Communications, 9(1). doi:10.1038/s41467-018-07315-6Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055Melde, K., Mark, A. G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537(7621), 518-522. doi:10.1038/nature19755Castiñeira-Ibáñez, S., Tarrazó-Serrano, D., Fuster, J., Candelas, P., & Rubio, C. (2018). Polyadic Cantor Fractal Ultrasonic Lenses: Design and Characterization. Applied Sciences, 8(8), 1389. doi:10.3390/app8081389Rubio, C., Fuster, J., Castiñeira-Ibáñez, S., Uris, A., Belmar, F., & Candelas, P. (2017). Pinhole Zone Plate Lens for Ultrasound Focusing. Sensors, 17(7), 1690. doi:10.3390/s17071690Zhou, Q., Xu, Z., & Liu, X. (2019). High efficiency acoustic Fresnel lens. Journal of Physics D: Applied Physics, 53(6), 065302. doi:10.1088/1361-6463/ab5878Schindel, D. W., Bashford, A. G., & Hutchins, D. A. (1997). Focussing of ultrasonic waves in air using a micromachined Fresnel zone-plate. Ultrasonics, 35(4), 275-285. doi:10.1016/s0041-624x(97)00011-5Calvo, D. C., Thangawng, A. L., Nicholas, M., & Layman, C. N. (2015). Thin Fresnel zone plate lenses for focusing underwater sound. Applied Physics Letters, 107(1), 014103. doi:10.1063/1.4926607Tarrazó-Serrano, D., Pérez-López, S., Candelas, P., Uris, A., & Rubio, C. (2019). Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses. Scientific Reports, 9(1). doi:10.1038/s41598-019-43495-xSalazar, J., Turó, A., Chávez, J. A., Ortega, J. A., & García, M. J. (2000). Transducer resolution enhancement by combining different excitation pulses. Ultrasonics, 38(1-8), 145-150. doi:10.1016/s0041-624x(99)00177-8Salazar, J., Turo, A., Chavez, J. A., Ortega, J. A., & Garcia, M. J. (2003). High-power high-resolution pulser for air-coupled ultrasonic nde applications. IEEE Transactions on Instrumentation and Measurement, 52(6), 1792-1798. doi:10.1109/tim.2003.820445Oelze, M. (2007). Bandwidth and resolution enhancement through pulse compression. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(4), 768-781. doi:10.1109/tuffc.2007.310Konovalov, S. I., & Kuz’menko, A. G. (2015). On the optimization of the shapes of short-duration acoustic pulses for solving probing problems in immersion tests. Russian Journal of Nondestructive Testing, 51(2), 101-107. doi:10.1134/s106183091502005

    Tunable depth of focus of acoustical pupil masked Soret Zone Plate

    Full text link
    [EN] In acoustical lenses both resolution and depth of focus are determined by diffraction and the smaller the lens aperture the worse the resolution and the greater the depth of focus. Diffraction-limited resolution has a Soret Zone Plate, but a long depth of focus has an axicon. Nevertheless, these are two different devices each of which requires its own independent design. In this paper, we have shown that the transition from focusing to a diffraction limited spot to a quasi-diffraction free beam can be realized in the same focusing device without changing its topology. It has been shown that using a classical planar Soret Zone Plate lens made of a concentric array of circular aperiodical rings with an amplitude pupil mask placed closely to the surface of lens allows to form a quasi-Bessel beams under specific conditions, part of a diffracted wave collimates, producing an elongated focus. Experiments are performed in water tanks in order to verify the simulation results. Experimental verification shown that the depth of focus of a pupil-masked Soret Zone Plate increases 1.63 times and resolution increases 1.2 times (with minimal beam waist about of 0.67 of wavelength and depth of focus about 5.72 of wavelength). By dynamically controlling the size of the amplitude pupil mask, it is possible to quickly control the depth of focus of an acoustic lens.This work has been supported by Spanish MINECO (TEC2015-70939-R) and was partially supported by Tomsk Polytechnic University Competitiveness Enhancement Program.Castiñeira Ibáñez, S.; Tarrazó-Serrano, D.; Minin, OV.; Rubio Michavila, C.; Minin, IV. (2019). Tunable depth of focus of acoustical pupil masked Soret Zone Plate. Sensors and Actuators A Physical. 286:183-187. https://doi.org/10.1016/j.sna.2018.11.053S18318728

    Numerical simulation and laboratory measurements on an open tunable acoustic barrier

    Full text link
    [EN] A new open, thin and low frequency acoustic barrier is presented. These barriers, based on arrays of isolated pickets produce high acoustic attenuation in a selective range of frequencies related to their geometry and distribution. These open barriers are acoustically competitive with traditional ones, which are based on con-tinuous and rigid materials. To show its versatility to in attenuating di¿erent selected ranges of frequencies, a compact numerical model is presented. Di¿erent cases are analysed and compared with experimental results. The accuracy of the experimental re-sults compared to the simulated ones allow us to use the compact model to design these barriers in order to reduce both industrial and tra¿c noise on demand and to introduce them into the noise control market.This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879.Rubio Michavila, C.; Castiñeira Ibáñez, S.; Uris Martínez, A.; Belmar Ibáñez, F.; Candelas Valiente, P. (2018). Numerical simulation and laboratory measurements on an open tunable acoustic barrier. Applied Acoustics. 141:144-150. https://doi.org/10.1016/j.apacoust.2018.07.002S14415014

    Sound focusing of a wavelength-scale gas-filled flat lens

    Full text link
    [EN] The capability of focusing of a novel acoustic lens based on a mesoscale acoustic cuboid particle filled with CO2 gas is analysed. This flat lens is able to focus sound in the same way that conventional curved acoustic lenses do. It is shown that the sound speed inside the cuboid is the responsible for this effect. By changing the percentage of CO2, the sound speed inside the cube changes and, therefore, the focusing properties change as well. The focusing effect is numerically investigated and experimentally validated. The results obtained allow the design of new flat low cost acoustic lenses with wavelength-scale dimensions for different applications.This work has been supported by TEC2015-70939-R (MINECO/FEDER). The research was partially supported by Tomsk Polytechnic University Competitiveness Enhancement Program. IVM and OVM would like to thank Dr RUBEN PICO VILA for useful discussions.Rubio Michavila, C.; Tarrazó-Serrano, D.; Minin, OV.; Uris Martínez, A.; Minin, IV. (2018). Sound focusing of a wavelength-scale gas-filled flat lens. EPL (Europhysics Letters). 123(6):64002-1-64002-4. https://doi.org/10.1209/0295-5075/123/64002S64002-164002-4123
    corecore