7,113 research outputs found

    Topological analysis of polymeric melts: Chain length effects and fast-converging estimators for entanglement length

    Full text link
    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_e which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive and test new estimators which eliminate these systematic errors using information obtainable from the variation of entanglement characteristics with chain length. The new estimators produce accurate results for N_e from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.Comment: Major revisions. Developed near-ideal estimators which operate on multiple chain lengths. Now test these on two very different model polymers

    Thermopower peak in phase transition region of (1-x)La2/3_{2/3}Ca1/3_{1/3}MnO3_{3}/xYSZ

    Full text link
    The thermoelectric power (TEP) and the electrical resistivity of the intergranular magnetoresistance (IGMR) composite, (1-x)La2/3_{2/3}Ca1/3_{1/3}MnO3_{3}/xYSZ (LCMO/YSZ) with x = 0, 0.75%, 1.25%, 4.5%, 13% 15% and 80% of the yttria-stabalized zirconia (YSZ), have been measured from 300 K down to 77 K. Pronounced TEP peak appears during the phase transition for the samples of x >> 0, while not observed for x = 0. We suggest that this is due to the magnetic structure variation induced by the lattice strain which is resulting from the LCMO/YSZ boundary layers. The transition width in temperature derived from dχ/dTd\chi/dT, with χ\chi being the AC magnetic susceptibility, supports this interpretation.Comment: 4 pages, 4 eps figures, Latex, J. Appl. Phys 94, 7206 (2003

    Random Time Forward Starting Options

    Full text link
    We introduce a natural generalization of the forward-starting options, first discussed by M. Rubinstein. The main feature of the contract presented here is that the strike-determination time is not fixed ex-ante, but allowed to be random, usually related to the occurrence of some event, either of financial nature or not. We will call these options {\bf Random Time Forward Starting (RTFS)}. We show that, under an appropriate "martingale preserving" hypothesis, we can exhibit arbitrage free prices, which can be explicitly computed in many classical market models, at least under independence between the random time and the assets' prices. Practical implementations of the pricing methodologies are also provided. Finally a credit value adjustment formula for these OTC options is computed for the unilateral counterparty credit risk.Comment: 19 pages, 1 figur

    Random walk approach to the d-dimensional disordered Lorentz gas

    Full text link
    A correlated random walk approach to diffusion is applied to the disordered nonoverlapping Lorentz gas. By invoking the Lu-Torquato theory for chord-length distributions in random media [J. Chem. Phys. 98, 6472 (1993)], an analytic expression for the diffusion constant in arbitrary number of dimensions d is obtained. The result corresponds to an Enskog-like correction to the Boltzmann prediction, being exact in the dilute limit, and better or nearly exact in comparison to renormalized kinetic theory predictions for all allowed densities in d=2,3. Extensive numerical simulations were also performed to elucidate the role of the approximations involved.Comment: 5 pages, 5 figure

    Dynamic multilateral markets

    Get PDF
    We study dynamic multilateral markets, in which players' payoffs result from intra-coalitional bargaining. The latter is modeled as the ultimatum game with exogenous (time-invariant) recognition probabilities and unanimity acceptance rule. Players in agreeing coalitions leave the market and are replaced by their replicas, which keeps the pool of market participants constant over time. In this infinite game, we establish payoff uniqueness of stationary equilibria and the emergence of endogenous cooperation structures when traders experience some degree of (heterogeneous) bargaining frictions. When we focus on market games with different player types, we derive, under mild conditions, an explicit formula for each type's equilibrium payoff as the market frictions vanish

    Microscopic theory for the glass transition in a system without static correlations

    Full text link
    We study the orientational dynamics of infinitely thin hard rods of length L, with the centers-of-mass fixed on a simple cubic lattice with lattice constant a.We approximate the influence of the surrounding rods onto dynamics of a pair of rods by introducing an effective rotational diffusion constant D(l),l=L/a. We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a time-dependent torque-torque correlator of an isolated pair of rods. A glass transition occurs at l_c, if v(l_c)=1. We present a variational and a numerically exact evaluation of v(l).Close to l_c the diffusion constant decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a glass transition in the absence of any static correlations, in contrast to present form of mode coupling theory.Comment: 6 pages, 3 figure

    Shear flow effects on phase separation of entangled polymer blends

    Get PDF
    We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an approach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and plateau moduli of the two components

    Enhanced electrohydrodynamic collapse of DNA due to dilute polymers

    Get PDF
    We experimentally demonstrate that addition of small, charge-neutral polymers to a buffer solution can promote compression of dilute solutions of single electrophoresing DNA. This phenomenon contrasts with the observed extension of DNA during capillary electrophoresis in dilute solutions of high molecular weight polymers. We propose these discrepancies in micron-scale DNA configurations arise from different nano-scale DNA-polymer collision events, controlled by solute polymer properties. We build upon theories previously proposed for intermolecular DNA aggregation in polymer-free solutions to develop scaling theories that describe trends seen in our data for intramolecular DNA compaction in dilute polymer solutions.National Science Foundation (U.S.) (Grant 1335938)Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology

    Energy spectra of finite temperature superfluid helium-4 turbulence

    Get PDF
    A mesoscopic model of finite temperature superfluid helium-4 based on coupled Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments and available numerical results, a numerical method for designing well resolved, mesoscopic calculations of finite temperature superfluid turbulence is developed. The application of model and numerical method to the problem of fully developed turbulence decay in helium II, indicates that the spectral structure of normal-fluid and superfluid turbulence is significantly more complex than that of turbulence in simple-fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation in the normal-fluid is compensated by the Lundgren force, indicate three scaling regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov k?5/3 regime, a sub-turbulence, low Reynolds number, fluctuating k?2.2 regime, and an intermediate, viscous k?6 range that connects the two. The k?2.2 regime is due to normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three scaling regimes in the superfluid, that include a k?3 range that corresponds to the growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent, low wavenumber, k?5/3 regime that emerges during the termination of this growth, as superfluid vortices agglomerate between intense normal-fluid vorticity regions, and weakly polarized bundles are formed. There is also evidence of a high wavenumber k?1 range that corresponds to the probing of individual-vortex velocity fields. The Kelvin waves cascade (the main dynamical effect in zero temperature superfluids) appears to be damped at the intervortex space scale

    Boundary conditions associated with the Painlev\'e III' and V evaluations of some random matrix averages

    Full text link
    In a previous work a random matrix average for the Laguerre unitary ensemble, generalising the generating function for the probability that an interval (0,s) (0,s) at the hard edge contains k k eigenvalues, was evaluated in terms of a Painlev\'e V transcendent in σ \sigma -form. However the boundary conditions for the corresponding differential equation were not specified for the full parameter space. Here this task is accomplished in general, and the obtained functional form is compared against the most general small s s behaviour of the Painlev\'e V equation in σ \sigma -form known from the work of Jimbo. An analogous study is carried out for the the hard edge scaling limit of the random matrix average, which we have previously evaluated in terms of a Painlev\'e \IIId transcendent in σ \sigma -form. An application of the latter result is given to the rapid evaluation of a Hankel determinant appearing in a recent work of Conrey, Rubinstein and Snaith relating to the derivative of the Riemann zeta function
    • …
    corecore